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Abstract

Mixing in Time and Space for Discrete Spin Systems

by

Dror Weitz

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alistair Sinclair, Chair

This dissertation studies relationships between fast convergence to equilibrium (mixing in

time) of natural Markov chain Monte Carlo algorithms for discrete spin systems, and de-

cay of correlations with distance in the corresponding equilibrium distribution (mixing in

space). The results fall into four main groups.

In the first part we generalize the Dobrushin and Dobrushin-Shlosman conditions

for uniqueness of the Gibbs measure (a form of mixing in space) by presenting conditions

of any finite size for models on any underlying graph. We give two dual conditions, one

requiring that the total influence on a site is small, and the other that the total influence of

a site is small. As for the original ones, our conditions also imply O(n log n) mixing time of

the corresponding Markov chain, and this connection is discussed in detail. In contrast to

the proofs of the original conditions, our proofs are combinatorial in nature and use tools

from the analysis of discrete Markov chains, in particular the path coupling method.

In the second part we critically examine a known sharp equivalence between ap-

propriate notions of mixing in time and in space. For this part, the discussion applies only

to systems on the d-dimensional integer lattice Z
d. We give new, purely combinatorial ar-

guments to prove that, if the mixing time of the Glauber dynamics is O(n log n), then spin

correlations decay exponentially fast with distance in the Gibbs distribution. We also prove

the converse implication for monotone systems, and for general systems we prove that ex-

ponential decay of correlations implies O(n log n) mixing time of a dynamics that updates

sufficiently large blocks (rather than single sites). While the above equivalence was al-

ready known to hold in various forms, our proofs avoid the functional analysis machinery
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employed in previous proofs.

In the third part we develop a new framework for analyzing the mixing time for

spin systems on trees. The main technical result here is that on trees, an appropriate form

of mixing in space implies O(n log n) mixing time of the Glauber dynamics. The novelty of

this implication is that it is specific to the boundary condition. This allows us to give the

first comprehensive analysis (in any context) of the effect of boundary conditions on the

mixing time for the Ising and other models. Specifically, for the Ising model we show that

the mixing time on an n-vertex regular tree with (+)-boundary remains O(n log n) at all

temperatures (in contrast to the free boundary case, where the mixing time is not bounded

by any fixed polynomial at low temperatures). We also show that this bound continues to

hold in the presence of an arbitrary external field. Our results are actually stronger, and

provide tight bounds on the log-Sobolev constant and the spectral gap of the dynamics.

In addition, our methods yield simpler proofs and stronger results for the mixing time in

the regime where it is insensitive to the boundary condition. We apply our techniques to

other models as well, and obtain O(n log n) mixing time over a significantly wider range

of parameter values than previously known for independent sets, colorings and the Potts

model. This includes situations in which the mixing time is strongly dependent on the

boundary condition, as well as situations in which fast mixing is proved for all boundary

conditions.

In the fourth part we explore directions for extending our results for trees to the

2-dimensional integer lattice Z
2. The main motivation here is resolving a long standing

conjecture which states that, conditioned on the all-(+) boundary, the mixing time re-

mains bounded by a fixed polynomial in n at all temperatures. (Notice that for the free

boundary case, the mixing time at low temperatures is known to be very slow, specifically

exp(Θ(
√

n)).) We present a new implication for systems on Z
2, where a certain form of

mixing in space implies polynomial mixing time of the dynamics, and the implication is

specific to the boundary condition. Although the form of mixing in space in the hypothesis

of our condition is still too strong to have an immediate application, it suggests directions

for future research towards resolving the above conjecture.
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Chapter 1

Introduction

Spin systems are a class of models that originated in Statistical Physics, though interest

in them has since expanded to many other areas, including Probability Theory, Statistics,

Artificial Intelligence, Communication, and Theoretical Computer Science. A spin system

consists of a collection of sites which are the vertices of an underlying connected graph.

A configuration of the spin system is an assignment of one of a finite set of spins to each

site. The sites interact locally, according to potentials specified by the system, such that

different combinations of spins on neighboring sites have different relative likelihoods. This

interaction gives rise to a well-defined probability distribution over configurations of any

finite subset (region) of the sites. Such a distribution is referred to as a finite volume Gibbs

distribution, and is regarded as the equilibrium state of the given subset.

For example, in the Ising model (probably the most widely considered spin system)

on a finite graph G = (V,E), a configuration σ = (σx) consists of an assignment of ±1-

values to each vertex of V . The probability of finding the system in configuration σ ∈
{±1}V ≡ ΩG is given by the Gibbs distribution

µG(σ) ∝ exp
(
β
∑

xy∈E
σxσy

)
, (1.1)

where β ≥ 0 is the inverse temperature. Thus µG assigns higher probability to configura-

tions in which many neighboring spins are aligned. This effect increases with β, so that at

high temperatures (low β) the spins behave almost independently, while at low tempera-

tures (high β) there is global order. Frequently one imposes a boundary condition on the

model, which corresponds to fixing the spin values at some specified “boundary” vertices

of G; the term free boundary is used to indicate that no boundary condition is specified.
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In the classical Ising model, G = Gn is a cube of side n1/d in the d-dimensional

Cartesian lattice Z
d, and one studies the properties of the Gibbs distribution as n → ∞

with a specified boundary condition (e.g., the all-(+) or the all-(−) configuration) on the

faces of the cube; this limit is referred to as the “(infinite volume) Gibbs measure” for the

given boundary condition. It is well known that a phase transition occurs at a certain critical

inverse temperature β = βc (which depends on the dimension d): for β < βc (the “high

temperature” region) there are no long-range correlations between spins and consequently

there is a unique Gibbs measure independent of the boundary condition, while for β > βc

(the “low temperature” region) correlations are present at arbitrary distances and there are

(at least) two distinct Gibbs measures (or “phases”), corresponding to the (+) and (−)-

boundary conditions respectively. See, e.g., [Geo88, Sim93] for more background.

While the classical theory focused on static properties of the Gibbs measure, in

modern statistical physics the emphasis has shifted towards dynamical questions with a

computational flavor. The key object here is the Glauber dynamics, a Markov chain on the set

of spin configurations ΩG of a finite graph G. For definiteness, we describe the “heat-bath”

version of Glauber dynamics: at each step, pick a vertex x of G u.a.r., and replace the spin

at x by a random spin drawn from the distribution of σx conditional on all the neighboring

spins. It is easy to check that the Glauber dynamics is an ergodic, reversible Markov chain

on ΩG whose stationary distribution is exactly µG. The Glauber dynamics is much studied

for two reasons: firstly, it is the basis of Markov chain Monte Carlo algorithms, widely

used in computational physics for sampling from the Gibbs distribution; and secondly, it

is a plausible model for the actual evolution of the underlying physical system towards

equilibrium. In both contexts, the central question is to determine the mixing time, i.e., the

number of steps until the dynamics is close to its stationary distribution.

Advances in statistical physics over the past decade have led to the following re-

markable characterization of the mixing time on finite n-vertex cubes with free boundary

in the 2-dimensional lattice Z
2 [SZ92, MOS94, MO94a, Mar98, Ces01, CGMS96]: when

β < βc the mixing time is O(n log n), while for β > βc it is exp(Ω(
√

n )). Thus the phase

transition (a static, spatial phenomenon) has a dramatic computational manifestation in

the form of an explosion from optimal to exponential in the running time of a natural

algorithm. This result stands as perhaps the most convincing example to date of an in-

timate connection between phase transitions and computational complexity, a connection

that has recently received a lot of attention, in particular for k-SAT and related problems
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(see, e.g., [FB99, BMZ02, AP03]).

The strikingly sharp correspondence in the above result between notions of tem-

poral and spatial mixing is the principle motivation for this dissertation. By temporal mixing

we mean that the Glauber dynamics converges “very fast” to its stationary Gibbs distribu-

tion, while by spatial mixing we mean that in the Gibbs distribution, correlations between

the spins of different sites decay “very fast” with the (graph) distance between them. Be-

side suggesting a connection between phase transitions and computational complexity, this

space-time correspondence is a rigorous example of another common heuristic observation

in computer science: a “local algorithm” works well if and only if the problem it solves is

of a “local nature”. Here the local algorithm is the Glauber dynamics, and the problem it

solves (sampling from the Gibbs distribution) is of a local nature depending on whether

distant spins are correlated or not.

Correspondences between temporal and spatial mixing have been studied before.

Most notable is the known equivalence between appropriate notions of temporal and spa-

tial mixing for systems on the integer lattice Z
d [SZ92, MO94a, MO94b, Ces01]. (In fact,

this equivalence was one of the main ingredients in achieving the sharp characterization of

the mixing time for the Ising model on the square lattice described above.) An appropriate

notion of temporal mixing is also known to imply a certain decay of correlations in general

graphs [KMP01]. The motivation for further studying temporal-spatial correspondences

in this dissertation stems from a need for progress on three levels. First, we seek a bet-

ter understanding of the mathematical principles underlying this intriguing phenomenon.

Second, we are interested in extending and generalizing the known correspondences be-

tween the two types of mixing, where the ultimate goal is to determine the full scope of this

equivalence. Finally, establishing new correspondences between the two types of mixing

is motivated by applications, where one type of mixing is known to hold but the other is

still open. We present results that address all three of the above motivations: we provide

new (simpler) proofs for known results, extend and generalize existing tools for establish-

ing both types of mixing, and present new correspondences between spatial and temporal

mixing using which we prove new rapid mixing results in various interesting scenarios.

Before we go on to discuss our results, it is worth mentioning that proving rapid

mixing of the dynamics using spatial mixing properties of the stationary distribution is an

example of a more general approach of using properties of the stationary distribution in

order to analyze the dynamics (in contrast to elementary probabilistic techniques such as
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coupling, which analyze the progress two arbitrary chains make towards coalescence in

a single step of the chain). The idea here is that an analysis that uses properties of the

stationary distribution is less likely to be affected by “locally bad configurations”, which

are detrimental to an analysis that considers the progress made in one step of arbitrary

instances of the chain. Other examples of this approach include bounds on the mixing time

stemming from the conductance of the Markov chain [SJ89] or from the congestion of a flow

along its paths [Sin92], as well as a series of papers [DF01, Mol02, Hay03, DFPV04] that

analyze the Glauber dynamics for sampling proper colorings, where the argument relies on

the fact that after a sufficient “burn-in” time, the chain is very unlikely to be in a “bad”

configuration.

Dobrushin type conditions

The first results we present are generalizations of the Dobrushin [Dob70] and Dobrushin-

Shlosman [DS85a] conditions for uniqueness of the Gibbs measure. As their name suggests,

conditions of this type were originally introduced as tools for establishing uniqueness of the

infinite volume Gibbs measure (a form of spatial mixing), but are also known to imply rapid

mixing of the dynamics. The fact that the same condition implies both spatial and temporal

mixing (by independent arguments) is what makes us particularly interested in this tool.

The Dobrushin condition has been widely used to prove uniqueness of the Gibbs

measure (and rapid mixing of the dynamics) in various models. What makes the condition

so appealing is its simplicity, where only the single-site distributions of the system are con-

sidered. Thus, using a simple calculation based on a finite distribution, one is able to deduce

properties of the infinite volume Gibbs measure (or the asymptotics of the mixing time of

the dynamics in arbitrarily large regions). Though this condition does not capture all the

scenarios in which the Gibbs measure is unique, achieving uniqueness bounds that extend

beyond the ones established by this condition usually requires techniques that are far more

complex. Dobrushin and Shlosman [DS85a] generalized the single-site condition by con-

sidering conditions which may depend on larger regions (but still of finite size). However,

unlike the original Dobrushin condition, their condition is applicable only when the under-

lying graph of sites is the integer lattice Z
d. Additional versions of the Dobrushin-Shlosman

condition were given by others (e.g., Stroock and Zegarlinski [SZ92]), but still only in the

context of Z
d.
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We generalize the above conditions by considering both larger volumes and any

underlying graph. Naturally, all such conditions require that the influence spins at different

sites have on each other is “small” in an appropriate sense. However, although they do not

mention this explicitly, some of the conditions in the literature require that the total influ-

ence on a site is small, while others require that the total influence of a site is small. We

make a clear distinction between these two cases, giving two dual conditions, both of them

in the generality described above. In contrast to the proofs of the previous conditions, our

proofs are purely combinatorial and are based solely on the technique of coupling two prob-

ability distributions. The arguments we use are of a dynamical nature, and thus our proof

that spatial mixing follows from the conditions is very similar to that of deducing temporal

mixing from them. We apply our conditions to prove uniqueness of the Gibbs measure for

various models. Although the models we discuss are already known by other methods to

admit a unique Gibbs measure, for most of them our results extend the range of parameters

for which uniqueness is established using “finite size” conditions of the Dobrushin type.

Temporal and spatial mixing on the integer lattice

Although the Dobrushin-type conditions discussed above imply both spatial and temporal

mixing, they do not establish a direct relationship between the two types of mixing (be-

cause the conditions are not necessarily tight). However, as mentioned above, a direct

equivalence between the two types of mixing is known for systems on the integer lattice Z
d.

Specifically, it is known that O(n log n) mixing time of the Glauber dynamics (uniformly

in the boundary condition) is equivalent to an exponential decay (with distance) of the

influence of the boundary condition on the equilibrium distribution. The first results in

this direction were given by Holley [Hol85] and Aizenman and Holley [AH87], followed by

Zegarlinski [Zeg90] and culminating in the work of Stroock and Zegarlinski [SZ92], who

were the first to establish the above equivalence in full. We further mention Martinelli and

Olivieri [MO94a, MO94b], who later obtained sharper results by working with a weaker

spatial mixing assumption, and Cesi [Ces01], who recently simplified some of the proofs.

See also [Mar98] for a review of related results.

We shed new light on this equivalence by presenting new, simpler proofs of it.

Furthermore, we explicitly point out the properties of the integer lattice used in the proofs

(the essential property is that the volume of balls around a given point in Z
d is polynomial
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in the radius rather than exponential), and isolate the arguments which use this property

from those that hold in general graphs. The existing proofs in the references mentioned

above use functional analysis, and usually discuss quantities such as the spectral gap and

the logarithmic Sobolev constant of the dynamics as a measure of its temporal mixing (these

quantities measure the contraction of the semi-group associated with the dynamics). Our

proofs are purely combinatorial, based on the elementary technique of coupling probability

distributions. Although some of the ideas we use have appeared before, ours is the first

proof in which the whole argument is purely combinatorial. We note that the result we

present in the direction going from spatial mixing to temporal mixing (of the single-site

Glauber dynamics) is limited in the sense that it only applies to monotone systems. For

general systems, however, we show that spatial mixing implies temporal mixing of a “finite-

block” dynamics, in which a sufficiently large block of spins is updated at each step. The

corresponding implication for the single-site dynamics in the general case is known [Ces01,

Mar98, MO94b, SZ92], but currently we do not have a combinatorial proof of it.

Boundary-specific mixing

The notions of temporal and spatial mixing implied by the Dobrushin-type conditions dis-

cussed above, as well as the notions that are known to be equivalent for systems on Z
d, are

notions of mixing that are uniform in the boundary condition. Namely, these notions assert

that the mixing time of the dynamics is O(n log n) under any boundary condition, or that

correlations decay with distance in the Gibbs distribution conditioned on any boundary con-

dition. One of the most interesting questions left open by the above results is establishing

correspondences between temporal and spatial mixing that are sensitive to the boundary

condition, and in particular, understanding the influence of the boundary condition on the

mixing time. To better appreciate this point, let us go back to the Ising model on Z
2. The

Dobrushin-type conditions and the known equivalence mentioned above are relevant to the

high temperature regime (β < βc), where the mixing time is O(n log n) and correlations de-

cay exponentially with distance uniformly in the boundary condition. Let us now shift our

attention to the low temperature regime (β > βc), where under the free boundary condition

the mixing time is exp(Ω(
√

n )) and correlations persist over arbitrarily long distances. In

contrast to the free boundary case, it has been conjectured that, in the presence of an all-(+)

boundary, the mixing time should remain polynomial in n at all temperatures [BM02, FH87].
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This captures the intuition that the only obstacle to rapid mixing for β > βc is the long time

required for the dynamics to get through the “bottleneck” between the (+)-phase and the

(−)-phase; the presence of the (+)-boundary eliminates the (−)-phase and hence the bot-

tleneck. Further support for this intuition comes from the known fact that a certain spatial

mixing property holds under the all-(+) boundary condition: specifically, it is known that

in this case the correlation between the spins of two sites is exponentially small in the dis-

tance between them. Even though this conjecture and the intuition behind it have received

a lot of attention in the past decade, obtaining formal arguments to resolve it has proved

very elusive. The main obstacle seems to be that the current techniques used for showing

polynomial mixing time of the dynamics are all insensitive to the boundary condition, and

are thus useful only for scenarios in which the mixing time is polynomial in n uniformly in

the boundary condition (which is known to be false in the above scenario).

We present what we believe are the first boundary-specific techniques for rapid

mixing and prove a strong version of the above conjecture in what is known in statistical

physics as the Bethe approximation, namely when the lattice Z
d is replaced by a regular

tree. Specifically, we analyze the mixing time of the Glauber dynamics for the Ising model

on a tree with (+)-boundary condition on its leaves, and show that it remains O(n log n)

at all temperatures. (With a free boundary, the mixing time on a tree is polynomial at all

temperatures, but the exponent grows arbitrarily large at low temperatures as β → ∞.) Our

result continues to hold in the presence of an arbitrary external field, even one that exactly

offsets the influence of the large boundary of the tree. This is apparently the first result that

quantifies the effect of boundary conditions on the dynamics in an interesting scenario. The

proof is based on a new equivalence between appropriate notions of temporal and spatial

mixing for systems on trees. The main novelty of this equivalence is that the notions of

temporal and spatial mixing it considers are boundary specific. This allows us to use the

fact that correlations decay with distance under the (+)-boundary (even though they persist

under the free boundary) to deduce O(n log n) mixing time of the Glauber dynamics under

the (+)-boundary (even though the mixing time is much slower under the free boundary).

We stress that, while the tree is simpler in some respects than Z
d due to the lack

of cycles, in other respects it is more complex: e.g., it exhibits a “double phase transition”.

Moreover, the Ising model on trees has recently received a lot of attention as the canonical

example of a statistical physics model on a “non-amenable” graph (i.e., one whose boundary

is of comparable size to its volume) — see, e.g., [KMP01, BRSSZ01, BRZ95, EKPS00, Iof96a,
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JS99, Lyo00, ST98].

In addition to the above new equivalence, we also present an improved technique

for establishing decay of correlations in the Gibbs distribution for spin systems on trees.

Combined with our new implication that deduces rapid mixing from decay of correlations,

we get a simple criterion for O(n log n) mixing time of the Glauber dynamics for systems

on trees. We apply this criterion to a number of models other than Ising, including the

hard-core model (independent sets), the antiferromagnetic Potts model (colorings), and

the (ferromagnetic) Potts model. As a result, we significantly extend the regime of param-

eters of these models for which the Glauber dynamics is known to mix in O(n log n) time.

This includes extending the regime for which the mixing time is O(n log n) uniformly in

the boundary condition, as well as giving first rapid mixing results for specific boundary

conditions.

Our equivalence between temporal and spatial mixing is based on analyzing the

spectral-gap and log-Sobolev constant of the dynamics. These quantities measure the rate of

convergence to equilibrium by bounding the rate of decay (in time) of variance and entropy

respectively. The main technique we use to analyze the two quantities is decomposing

variance and entropy w.r.t. near-product distributions. A similar decomposition approach

has been used to prove the (uniform in the boundary condition) equivalence on Z
d (see,

e.g., [Ces01]). We extend this theory of decomposition so that it can be used in boundary-

specific scenarios. Since we believe this theory to be central to correspondences between

temporal and spatial mixing, we discuss it in a stand-alone appendix where known and new

results are collected together, allowing for an accessible study of this theory.

Our new boundary-specific equivalence for trees encourages us to reconsider sys-

tems on the integer lattice and look for a similar boundary-specific correspondence. We

end this dissertation with an exploration of this direction, where we give a new boundary-

specific correspondence for systems on the square integer lattice, based on the decomposi-

tion theory mentioned above. However, this correspondence still considers a form of spatial

mixing that is stronger than the one that is known to take place in the Ising model at low

temperature with a (+)-boundary, and thus has no immediate applications. Nevertheless,

we hope this new correspondence will motivate further research on this problem.
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Organization and bibliographical notes

We give precise definitions of spin systems, Gibbs distributions, Glauber dynamics, and

various notions of temporal and spatial mixing in Chapter 2. Our generalizations of the

Dobrushin and Dobrushin-Shlosman conditions are given in Chapter 3; the content of

this chapter has been submitted for publication as [Wei03]. The combinatorial proofs

for the known equivalence between temporal and spatial mixing on the integer lattice are

given in Chapter 4; this chapter is based on joint work [DSVW02] with Martin Dyer, Alis-

tair Sinclair and Eric Vigoda. In Chapter 5 we present our new boundary-specific equiv-

alence for systems on trees, as well as its applications; this chapter is based on joint

work [MSW03, MSW04] with Fabio Martinelli and Alistair Sinclair. The discussion of

boundary-specific mixing on the square integer lattice is given in Chapter 6 and appears

only in this dissertation. The theory of decomposing variance and entropy is presented in

Appendix A; many of the new proofs in this appendix are taken from [MSW03]. Appendix B

contains a proof deferred from Chapter 5 and is also taken from [MSW03].
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Chapter 2

Preliminaries

In this chapter we set the basis for the discussion in the rest of this thesis by defining the

model of nearest-neighbor spin systems, explaining the concept of a Gibbs measure, and

describing the dynamical processes that we analyze. We also present different notions of

mixing in space, i.e., types of decay with distance of correlations in the Gibbs distribution,

and mixing in time, i.e., types of “fast” convergence to equilibrium of the dynamical process.

2.1 Spin systems

Let G = (V,E) be a countably infinite undirected graph that is locally finite (i.e., of bounded

degree). Let S be a finite alphabet referred to as the spin space. A configuration is then an

element σ ∈ Ω := SV , or an assignment of spins to V .

We use the following terminology and notation. Elements of V are called sites.

Subsets of V are called regions, and denoted by upper-case Greek letters. If Ψ is a region,

then Ψc := V \ Ψ and ∂Ψ := {x ∈ Ψc | ∃y ∈ Ψ s.t. {x, y} ∈ E} is the outer boundary of

Ψ. For a configuration σ we write σx for the spin at site x under σ, and similarly, σΨ for

the configuration on Ψ. When we write “σ = η on Ψ” we mean that σΨ = ηΨ. Similarly,

“σ = η off Ψ” means that σΨc = ηΨc . We let Ωη
Ψ = {σ ∈ Ω |σ = η off Ψ} denote the set

of configurations that agree with the fixed configuration (or “boundary condition”) η out-

side Ψ.

We consider spin systems with nearest neighbor interactions: each edge {x, y} ∈ E

is associated with a symmetric pair potential U{x,y} : S × S → R ∪ {∞}, and each vertex

x ∈ V is associated with a self potential Ux : S → R ∪ {∞}. Then, for a finite region Ψ, the
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Hamiltonian HΨ : Ω → R ∪ {∞} is defined as

HΨ(σ) :=
∑

{x,y}∈E : {x,y}∩Ψ6=∅
U{x,y}(σx, σy) +

∑

x∈Ψ
Ux(σx). (2.1)

The value this Hamiltonian assigns can be considered as the contribution to the energy of σ

coming from Ψ. Let η specify a boundary condition. The finite region Gibbs distribution

on Ψ conditioned on η is defined as:

µη
Ψ(σ) :=





1
Zη

Ψ
exp(−HΨ(σ)) if σ ∈ Ωη

Ψ;

0 otherwise,
(2.2)

where Zη
Ψ is the appropriate normalizing factor. Notice that the distribution on the config-

urations of Ψ depends only on η∂Ψ.

We will sometimes refer to the Gibbs distribution with a “free” boundary condi-

tion. By this we mean the distribution resulting from the above definition, except that the

first sum in (2.1) is taken only over edges {x, y} where both x ∈ Ψ and y ∈ Ψ, or equiva-

lently, Ψ is disconnected from the rest of the graph. This means that HΨ(σ) (and therefore

the distribution over configurations in Ψ) no longer depends on the configuration on the

boundary of Ψ.

We note that for systems with hard constraints, i.e., where some potentials may

take infinite values (see Examples 2.2 and 2.4 below), it is not necessary that all the finite

Gibbs distributions are well-defined. This is the case if for some boundary condition η

and some region Ψ, HΨ(σ) = ∞ for all σ ∈ Ωη
Ψ, because then the normalization constant

Zη
Ψ = 0. However, µη

Ψ is guaranteed to be well-defined if η is a feasible configuration. A

configuration η is said to be feasible if and only if Ux,y(ηx, ηy) and Ux(ηx) are finite for every

edge {x, y} ∈ E and every site x ∈ V . In this case Zη
Ψ > 0 because HΨ(η) < ∞. Notice also

that for feasible η, the support of µη
Ψ consists only of feasible configurations. In general, only

feasible boundary conditions are of interest and it is enough that the Gibbs distributions are

well-defined for these boundary conditions. However, some parts of our discussion require

that the Gibbs distributions be well-defined for all boundary conditions, even non-feasible

ones. We therefore say that a spin system is permissive if the associated Gibbs distributions

are well-defined for all regions Ψ and boundary conditions η, i.e., if for all Ψ and η there

exists at least one configuration σ ∈ Ωη
Ψ for which HΨ(σ) < ∞. Again, notice that only

systems with hard constraints may be non-permissive. From here onwards, when a part of

the discussion applies only to permissive systems, this is explicitly mentioned.
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We now illustrate the above definitions with some concrete examples. The follow-

ing four spin systems are among the most widely studied in the literature, and will serve

as the motivating examples throughout this thesis. In all four, the pair and self potentials

defining the system are uniform over edges and vertices respectively.

Example 2.1 Probably the best known spin system is the Ising model. In this case, there

are two spin values S = {±1}. The potentials are U{x,y}(s1, s2) = −β · s1 · s2 and Ux(s) =

−β · h · s, where β ∈ R
+ is the inverse temperature and h ∈ R is the external field.

Thus Ω = {±1}V , and the Gibbs distribution µ assigns higher weight to configurations in

which many neighboring spins are aligned with one another, as well as to configurations

in which many spins agree with the sign of h. These two effects increase with β and

with |h| respectively. In particular, at high temperatures (low β) the spins behave almost

independently, while at low temperatures (high β) large connected regions of equal spins

tend to form.

Example 2.2 Another famous example is the hard-core model (independent sets). This

has been used in statistical physics as a model of lattice gases [Geo88], and also in other

areas such as the modeling of communication networks [Kel85]. Again there are just two

spins S = {0, 1}, and we refer to a site as occupied if it has spin value 1 and unoccupied

otherwise. A configuration therefore specifies a subset of occupied sites. The potentials are

U{x,y}(1, 1) = ∞, U{x,y}(1, 0) = U{x,y}(0, 0) = 1, and Ux(s) = −s · lnλ, where λ ∈ R
+ is

the activity parameter. The infinite energy the edge potential assigns to a pair of occupied

sites means that there is a hard constraint forbidding two neighboring sites from both

being occupied. Thus, in this model, a configuration η is feasible if and only if it specifies

an independent set in the graph G. Furthermore, the finite Gibbs distributions are over

independent sets σ, and µ(σ) ∝ λ|σ|, where |σ| is the size (i.e., the number of occupied sites)

of the independent set σ. In the hard-core model, the activity parameter λ plays a similar

role to that of temperature in the Ising model. Specifically, for low values of λ the density

of occupied sites is low so the system is not too constrained, and therefore the spins behave

almost independently. On the other hand, for large values of λ the high density of occupied

sites means that the number of of constraints is significant enough to yield long range order

in the system. Finally, note that the hard-core model is permissive for all values of λ, since

the configuration in which all the sites in Ψ are unoccupied is assigned positive probability

under all boundary conditions.
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Example 2.3 A generalization of the Ising model to more than two spin values was in-

troduced by Potts [Pot] and is known as the (ferromagnetic) Potts model. Here S =

{1, 2, . . . , q} and the potentials are Ux,y(s1, s2) = −2βδs1,s2 , Ux(s) = 0. Thus the spin at

each site can take one of q possible values, and the aggregated potential of any configuration

depends on the number of adjacent pairs of equal spins. Note that the Ising model is the

special case q = 2.

Example 2.4 A natural analog to the Ising and Potts models arises by considering antifer-

romagnetic interactions, i.e., interactions in which neighbors with unequal spins are favored.

This is the so-called antiferromagnetic Potts model. In this model S = {1, 2, . . . , q}, and the

potentials are Ux,y(s1, s2) = 2βδs1 ,s2 , Ux(s) = 0, where β is the inverse temperature. The

most interesting case of this model is when β = ∞ (i.e., zero temperature), which introduces

hard constraints. Thus if we think of the q spin values as colors, a feasible configuration

is a proper coloring of G, i.e., an assignment of colors to vertices so that no two adjacent

vertices receive the same color. The Gibbs distribution is uniform over proper colorings. In

this model it is q that provides the parameterization. Notice that the colorings model is

permissive if and only if q > ∆, where ∆ is the maximum degree of the underlying graph.

Finally, we mention that this model has been widely studied not only in statistical physics,

but also in computer science because of its connection to graph coloring. See, e.g., [BW02]

for an informative account.

2.2 Gibbs measures, uniqueness and mixing in space

It is immediate from the definition that any finite region Gibbs distribution satisfies what

are called the “DLR compatibility conditions”, namely, for every Ψ, any feasible η and σ that

agree off Ψ, and every Λ ⊆ Ψ,

µη
Ψ( · |σΛc) = µσ

Λ. (2.3)

An immediate consequence is that µη
Ψ is stationary under µΛ. We illustrate what stationarity

means with the following two-step process (over configurations on Ψ). In the first step, a

configuration σ is chosen according to µη
Ψ. In the second step, a configuration is chosen

according to µσ
Λ. Stationarity means that the resulting distribution of the two-step process

is the same as if we only execute the first step, namely, choosing from µη
Ψ.
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For the discussion below, it is convenient to refer to the collection of all the finite

region Gibbs distributions µη
Ψ, as Ψ and η vary, as the specification µ. Also, when we say “a

specification µ”, we implicitly refer to an underlying spin system that gives rise to µ. Given

a specification µ, it is natural to extend the notion of DLR compatibility to measures on the

infinite space that are compatible with all the finite distributions.

Definition 2.1 A probability measure ν over the subset of feasible configurations is called a

Gibbs measure for the specification µ if, for every finite region Λ and ν-almost every configu-

ration σ,

ν( · |σΛc) = µσ
Λ.

The physical intuition for a Gibbs measure is that it describes a macroscopic equilibrium, i.e.,

all parts of the system are in equilibrium with their boundaries.

It is well known that, for any specification µ derived as above, at least one Gibbs

measure always exists. However, several Gibbs measures (or “phases”) for a given specifica-

tion may coexist (see, e.g., [Geo88] or [GHM01] for details and more on Gibbs measures).

The question of whether the Gibbs measure is unique or not is central in statistical physics

because it corresponds to whether one or more macroscopic equilibria are possible for a

given system. The importance of this concept is explained further in Chapter 3, where

criteria for uniqueness of the Gibbs measure are given. We note that any Gibbs measure

is a convex combination of limits of finite volume Gibbs distributions along appropriate

sequences of regions and boundary conditions (see, e.g., [Geo88]). Therefore, the ques-

tion of whether the Gibbs measure is unique can be translated to that of whether there is

asymptotic independence between the configuration on a finite region and a distant bound-

ary configuration. In order to write the above in a formal way, we introduce the following

notation. Let ν1 and ν2 be two probability measures on Ω, and Λ be a finite region. Then

‖ν1 − ν2‖Λ := max
A⊆SΛ

|ν1(A) − ν2(A)|, (2.4)

i.e., ‖ν1 − ν2‖Λ is the total variation distance between the projections of ν1 and ν2 on SΛ.

The Gibbs measure for the specification µ is unique if and only if the following condition

holds (see, e.g., [Geo88]).

Proposition 2.2 A specification µ admits a unique Gibbs measure if and only if, for every finite

region Λ, there exists an infinite sequence of regions Λ ⊂ Ψ1 ⊂ Ψ2 ⊂ . . . ⊂ Ψ` ⊂ . . . that
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covers V (i.e.,
⋃

`>0 Ψ` = V ), and for any two feasible configurations η and σ,

‖µη
Ψ`

− µσ
Ψ`
‖Λ −→

`→∞
0.

We observe that uniqueness of the Gibbs measure is a form of what we call in this

thesis “mixing in space”, i.e., it corresponds to a particular form of asymptotic independence

in the equilibrium state between configurations on two distant regions. In the rest of this

section, we describe the other spatial mixing notions we consider.

We start with a notion that is very similar to uniqueness of the Gibbs measure, but

requires that the decay with distance be exponential. For two regions Λ,Ψ, let dist(Λ,Ψ)

stand for the graph distance between the two regions.

Definition 2.3 We say the specification µ has weak spatial mixing if there exist constants C

and α > 0 such that, for any two regions Λ ⊆ Ψ, and any pair of boundary configurations η

and σ,

‖µη
Ψ − µσ

Ψ‖Λ ≤ C|Λ| exp(−α · dist(Λ, ∂Ψ)).

Although the above notion is called “weak”, it is easy to see that it implies uniqueness of the

Gibbs measure. The reason for the word “weak” is for contrast with the following stronger

notion, in which the influence of the boundary condition decays with the distance from the

region of disagreement between the two boundary configurations rather than the distance

from the boundary as a whole (see Figure 2.1).

Definition 2.4 We say the specification µ has strong spatial mixing if there exist constants C

and α > 0 such that, for any two regions Λ ⊆ Ψ, any ∆ ⊆ ∂Ψ, and any pair of boundary

configurations η and σ that differ only on ∆,

‖µη
Ψ − µσ

Ψ‖Λ ≤ C|Λ| exp(−α · dist(Λ,∆)).

Remark: In the literature, it is common to define strong spatial mixing as above, but with ∆

restricted to be a single site. However, in those references the discussion is limited to the case in

which the underlying graph is an integer lattice Z
d, where the single-site definition and ours are

equivalent. In order for strong spatial mixing to indeed be stronger than weak spatial mixing on

all graphs, our version is necessary. We also mention that the definitions in the literature vary in

the sense that different definitions consider different classes of regions Ψ for which the property

should hold (for example, on Z
d, Ψ may be restricted to be a regular box). Here we consider the the

strongest version by requiring the property to hold in all regions.
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(ii)(i)

σ

η

∆

Ψ Ψ
ΛΛ

Figure 2.1: Weak (i) vs. strong (ii) spatial mixing. In (i) the total variation distance be-

tween the projections on Λ of two Gibbs distributions corresponding to any two boundary

conditions η and σ is exponentially small in the graph distance of Λ from ∂Ψ. In (ii) it is

exponentially small in the distance of Λ from the region of disagreement ∆.
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So far, all the spatial mixing notions we have described have compared two dif-

ferent boundary conditions and required that, far inside and away from the boundary, this

difference has no effect, i.e., in an appropriate sense, the distribution far from the bound-

ary is roughly the same uniformly in the boundary condition. In contrast, the next spatial

mixing notion we present considers the Gibbs distribution under a specific boundary condi-

tion and states that, in this specific distribution, correlations between spins decay with the

distance between them. This kind of mixing in space is particularly relevant when there

are multiple Gibbs measures, i.e., when different boundary conditions yield significantly

different Gibbs distributions. In order to give the precise definition we need to introduce a

few more pieces of notation. Let f : Ω → R be a real-valued function on the configuration

space. For a boundary condition η and finite region Ψ, we write µη
Ψ(f) =

∑
σ∈Ωη

Ψ
µη

Ψ(σ)f(σ)

for the expected value of f w.r.t. µη
Ψ. Notice that f is defined on the whole configuration

space, and may even depend on the configuration outside Ψ. However, µη
Ψ(f) is by def-

inition the expected value of the restriction of f to Ωη
Ψ, which is consistent with the fact

that only configurations in Ωη
Ψ are in the support of µη

Ψ. Continuing with the definitions, let

Varη
Ψ(f) = µη

Ψ(f2)− µη
Ψ(f)2 denote the variance of f w.r.t. µη

Ψ, and notice that Varη
Ψ(f) is a

measure of the dependence of f on the configuration in Ψ, conditioned on the configuration

outside Ψ being η. Similarly, let Covη
Ψ(f, g) = µη

Ψ(fg) − µη
Ψ(f)µη

Ψ(g) denote the covariance

of f and g w.r.t. µη
Ψ. Finally, for a function f that depends only on the configuration on

some finite region, let Λf denote this region.

Definition 2.5 Let µ be a specification and η a (boundary) configuration. We say that the

Gibbs distribution µη
Ψ exhibits an exponential decay of correlations if there exists a constant

α > 0 such that, for any two functions f and g and every Ψ with Ψ ⊇ Λf ∪ Λg,

Covη
Ψ(f, g) ≤ CfCg exp(−α · dist(Λf ,Λg)),

where Cf and Cg are constants that depend on f and g respectively.

Remark: In Chapters 5 and 6 we will see that the choice of normalization constants Cf and Cg

may play a significant role, i.e., that in some scenarios the above property w.r.t. a certain collection

of constants Cf is significantly stronger than the same property w.r.t. larger constants. For now,

however, we will be content with this general version of the definition, which is also the common

version in the literature.
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2.3 The Glauber dynamics and mixing in time

In the previous section we described what an equilibrium state is, and defined various

properties which the state may or may not have. In this section, we consider properties

of a well known dynamical process that suggests a model for how the system converges to

the equilibrium state. This process is called (heat-bath) Glauber dynamics, and is a Markov

chain Monte Carlo algorithm that is also used for sampling from the Gibbs distribution. A

step in this Markov chain is a random update of the spin of a single site conditional on its

neighboring spins and, as we will see below, this process indeed converges to the Gibbs

distribution.

2.3.1 The Glauber dynamics

In this thesis we consider the Glauber dynamics only on finite regions Ψ, with a fixed

(boundary) configuration outside Ψ (although a similar process can also be defined on

the infinite graph). The heat-bath Glauber dynamics for a finite region Ψ and boundary

condition η is the Markov chain (σt) defined as follows. Given the current configuration

σt ∈ Ωη
Ψ, the transition σt → σt+1 is defined as:

1. Choose a site x uniformly at random from Ψ.

2. Choose σt+1 from µσt

{x}.

Equivalently, if we let P denote the transition matrix associated with this dynamics (i.e.,

P is a stochastic matrix whose rows and columns are indexed by configurations in Ωη
Ψ and

such that P (σ1, σ2) is the probability that the chain in σ1 makes a transition to σ2) then

P (σ1, σ2) = 1
|Ψ|
∑

x∈Ψ µσ1

{x}(σ2). Notice that unless σ1 = σ2, at most one term in the last

sum can be positive. This is because µσ1

{x}(σ2) > 0 only if σ1 = σ2 off x.

We note that for systems with hard constraints there may be issues with the well-

definedness of some transitions. If the system is permissive there is no such problem and

all transitions are well-defined, even if the current configuration is infeasible. For non-

permissive systems, we have to assume that the current configuration is feasible (and in

particular, that the fixed boundary condition η is feasible), i.e., the chain is run only on the

space of feasible configurations. Notice that in general this is not a problem because only

feasible configurations are in the support of µη
Ψ.
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An easy calculation verifies that the above Markov chain is reversible with respect

to the Gibbs distribution µη
Ψ, i.e., µη

Ψ(σ1)P (σ1, σ2) = µη
Ψ(σ2)P (σ2, σ1). In particular, µη

Ψ is a

stationary distribution of the Markov chain. The fact that this is the unique stationary dis-

tribution, and that the chain indeed converges to µη
Ψ from any initial state, follows from the

fact that the chain is aperiodic and connected, (i.e., the graph in which each configuration

is a vertex, and {σ1, σ2} is an edge if and only if P (σ1, σ2) > 0, is connected). To see that

the chain is aperiodic, simply observe that P (σ, σ) > 0 (i.e., the chain stays at its current

state with positive probability). The state space is guaranteed to be connected if the system

has no hard constraints, because in this case P (σ1, σ2) > 0 for every pair of configurations

σ1, σ2 that differ at exactly one site. For systems with hard constraints, we assume that

the state space of feasible configurations is connected (for every subset Ψ and boundary

condition η), i.e., we limit our discussion of the Glauber dynamics to systems of this kind.

Notice that for the hard-core model (Example 2.2), the state space of feasible configurations

is connected for all values of λ. For the colorings model (Example 2.4), the state space is

connected provided that the number of colors q ≥ ∆ + 2, where ∆ is the maximum degree

of a site in G.

Remark: In the literature, the term “Glauber dynamics” usually refers to any Markov chain that

makes single-site updates that are reversible with respect to the Gibbs distribution. Our definition

is the heat-bath version, where “heat-bath” means that the update at site x is done according the

stationary distribution for the spin at x, conditional on the spins of its neighbors. For definiteness, in

this thesis “Glauber dynamics” refers to the heat-bath version. Nevertheless, all the results regarding

the Glauber dynamics below apply to any version of it.

In some scenarios, it is useful to consider Markov chains that in each step update a

finite region (or “block”) rather than a single site. The reason for this is that, in some cases,

a dynamics that updates larger blocks yields to analysis while the single-site dynamics does

not. The analysis of the block dynamics is relevant because it is known that the performance

of the single-site dynamics is “similar” to that of the block dynamics, provided that the

blocks used in the latter are “not too large”. In addition, under the same assumption a step

in the chain can be efficiently implemented.

Naturally, in order to define a block dynamics, we have to specify the blocks that

may updated. Let {Θi}i=1,2,... be a collection of finite regions (blocks) that cover V finitely

many times, i.e., each site is included in at least one, but not more than finitely many Θi.

The heat-bath dynamics for µη
Ψ based on the collection of blocks {Θi}i=1,2,... is defined as
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follows. Let B(Ψ) := {i |Θi ∩ Ψ 6= ∅} denote the set of indices of blocks that intersect Ψ.

The transition σt → σt+1 is defined as:

1. Choose a block index i uniformly at random from B(Ψ) and let Θ = Θi ∩ Ψ.

2. Choose σt+1 from µσt

Θ .

Again, this chain is reversible w.r.t. µη
Ψ and converges to it (with the same caveats as before

regarding systems with hard constraints). Here, too, one can think of updates other than

heat-bath of the chosen block Θ, since all that matters is that the Gibbs distribution µη
Ψ be

stationary under this update. In Chapter 3 we will consider general types of updates, but

elsewhere we limit our attention to the heat-bath version unless otherwise stated. Finally,

notice that the Glauber dynamics is the special case in which each block Θi is a single site.

2.3.2 Mixing in time

Now that a dynamical process has been defined, and its convergence to the equilibrium

distribution established, a natural next step is to quantitatively characterize this approach to

equilibrium, i.e., to determine how fast the dynamics converges. From a statistical physics

point of view, this question is important for understanding phenomena such as how the

system returns to equilibrium after a shock forces it out of it. From an algorithmic point of

view, it is important to determine the time it takes for the Markov chain to get close to the

Gibbs distribution in order to determine how long the MCMC algorithm should be run in

practice.

Different notions of rate of convergence are used and explored in the literature.

Probably the most common notion is the mixing time τ(ε), defined as the number of steps

required to get within total variation distance ε from the stationary distribution, starting

from an arbitrary configuration. The formal definition follows. For a region Ψ and bound-

ary condition η, let P be the transition matrix associated with the dynamics for µη
Ψ. We

write P t(σ, ·) for the row indexed by σ in the t-th power of P , and observe that this is the

distribution of the dynamics after t steps starting from σ. For two distributions ν1 and ν2

whose supports are subsets of Ωη
Ψ, we write ‖ν1 − ν2‖ = ‖ν1 − ν2‖Ψ for the total variation

distance between the two distributions (over the whole of Ψ).

Definition 2.6 For every ε > 0, the mixing time τ(ε) of the Markov chain P is defined as

τ(ε) = inf
{
t : ‖P t(σ, ·) − µη

Ψ‖ ≤ ε for all σ in the support of µη
Ψ

}
.
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In the literature, the dependency on ε is often omitted and the definition only considers

a fixed ε, e.g., ε = 1
2e . The reason for this is the following well-known property of the

mixing time [Ald83]: for any ε ≤ 1
e , τ(ε) ≤ τ( 1

2e)dlog( 1
ε )e. Nevertheless, we include ε in

the definition here because, as we will see next, we work with rates of decay in which the

dependence on ε is sharper than that in the last inequality.

A dual view of the mixing time is the one in which the total variation distance from

the stationary distribution is expressed as a function of the number of steps taken (i.e., as

a function of time). This view is more convenient for comparing the mixing time with

spatial mixing notions, where total variation distance between distributions was expressed

as a function of the relevant graph distance (i.e., as a function of space). Before giving the

specifics of our temporal mixing notions, we fix two important pieces of notation that are

used throughout this thesis. Consider the dynamics based on the collection of blocks {Θi}
for the region Ψ and some boundary condition η. Let n = |Ψ| denote the volume of the

region in which the dynamics takes place, and let m = |B(Ψ)| stand for the number of

blocks from which a block to be updated is chosen u.a.r. in every step. (For example, m = n

in the case of the single-site Glauber dynamics.)

Definition 2.7 We say that the dynamics based on the collection of blocks {Θi} has optimal

temporal mixing for a boundary condition η if there exist constants C and α > 0 such that,

for any region Ψ, the dynamics for µη
Ψ has the following property. For any positive integer k

and all σ in the support of µη
Ψ,

‖P km(σ, ·) − µη
Ψ‖ ≤ Cn exp(−αk),

where P is the transition matrix associated with the dynamics for µη
Ψ.

Remarks:

• Note that optimal temporal mixing here is defined with respect to a specific boundary condi-

tion. However, we will sometime discuss this property in a context where it holds uniformly

in the boundary condition, i.e., for all boundary conditions with uniform constants C and α.

• As in the spatial mixing definitions, other (possibly weaker) versions of the above temporal

mixing definition are worth considering, where the property holds for a certain class of re-

gions Ψ rather than for arbitrary regions. We will see an example of this in Chapter 5, where

the underlying graph is a regular infinite rooted tree, and where we consider a version of

optimal temporal mixing in which the above property holds for all complete subtrees Ψ.
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• A simple inversion reveals that optimal temporal mixing is equivalent to a mixing time τ(ε) =

O(m log(n
ε
)). Note also that the word optimal in the definition should not be taken too literally.

Although it is indeed believed that the mixing time of a dynamics that is based on finite size

blocks (e.g., the Glauber dynamics) cannot be o(m log n), we know of no rigorous proof of

this conjecture for general spin systems.

In the above temporal mixing notion, when we compare an instance of the chain

with the stationary distribution µη
Ψ, we measure the total variation distance on the full

configuration space, i.e., any subset of SΨ can be the event that distinguishes the two

distributions. If optimal temporal mixing holds, then indeed it is guaranteed that after the

appropriate number of steps, this total variation distance is small. However, we may also

consider the total variation distance between projections of the two distributions onto SΛ

for some Λ ⊂ Ψ. Obviously, the total variation distance between the projections is at most

the total variation distance between the original distributions, but it may be strictly smaller.

In particular, it may be the case that better bounds as a function of time can be obtained for

the total variation distance between the projections of the distributions on small subsets.

This is expressed by the following (stronger) property.

Definition 2.8 We say that the dynamics based on the collection of blocks {Θi} has optimal

projected temporal mixing for a boundary condition η if there exist constants C and α > 0

such that, for any region Ψ, the dynamics for µη
Ψ has the following property. For any region

Λ ⊆ Ψ, any positive integer k, and all σ in the support of µη
Ψ,

‖P km(σ, ·) − µη
Ψ‖Λ ≤ C|Λ| exp(−αk),

where P is the transition matrix associated with the dynamics for µη
Ψ.

We now pause to discuss the use of the parameters m (the number of blocks)

and n (the volume of the region Ψ). First, as already mentioned above, m = n in the case

of the Glauber dynamics. In fact, even in the case where the dynamics uses larger blocks,

in this thesis the collection of blocks will usually be such that each site is covered by a

bounded number of blocks and each block is of bounded size, implying that m is of the

same order as n. Thus, if all we were interested in was a bound on the mixing time in terms

of the volume n of the region the process is run in, then m could have been replaced by n.

However, we retain the parameter m (even in the case of the Glauber dynamics) because we

wish to emphasize which parts of our bounds reflect the fact that it takes m steps on average
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to update a given block, and which parts are more inherently related to the fact that we

sample from a distribution over a region of size n (e.g., because the space of configurations

is of size |S|n). This is especially relevant when considering a continuous time version of the

dynamics. Of particular interest is the version where transitions are made m times per unit

of time (i.e., each block is updated once per unit of time) on average. This version has an

equivalent representation where each block is associated with a mean 1 Poisson clock, and

the block is updated whenever its corresponding clock fires (see, e.g., [Mar98]). In fact,

when we said that the Glauber dynamics suggests a model for the evolution of the actual

physical system towards equilibrium, we were referring to this continuous time version of

the dynamics (in which the rate at which a site is updated is independent of the size of

the region in which the dynamics takes place). Notice that this version of the Glauber

dynamics can be defined not only on finite regions, but on the infinite graph as well. (For

precise definitions of the continuous time chain in both the finite and infinite case, see,

e.g., [Mar98]). In light of the above discussion, we now illustrate the relevance of the

parameter m. For example, “running the dynamics for km steps” should be interpreted as

running the dynamics long enough such that each block is updated k times on average;

qualitatively (if not precisely), this corresponds to running the continuous time dynamics

for k units of time. On the other hand, in “running the dynamics for km log n steps”, the

log n factor should be interpreted as a dependency on n that is inherent to the fact that the

dynamics is run on a region of size n, regardless of the rate at which the blocks are updated.

In particular, in the continuous time chain described above, this corresponds to running for

k log n units of time.

With the above discussion in mind, it is now easier to see why the notion of opti-

mal projected mixing as in Definition 2.8 is appealing. This is because this notion can be

interpreted as a form of bounded mixing time, i.e., one that does not depend on the size n

of the region Ψ. To clarify this point, notice that if optimal projected temporal mixing holds

then the time needed in order for the projected distribution on a region Λ to be ε-close to

the stationary distribution is the time such that every block is updated r times on average,

where r is a number that depends on ε and the size of Λ, but not on the size of the region Ψ

in which the dynamics takes place.

We now go on to consider two additional notions of rate of convergence to equi-

librium: the spectral gap and the logarithmic Sobolev constant of the dynamics. These two

notions from functional analysis measure the rate of decay with time of variance and en-
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tropy respectively. As we will see below, the mixing time defined above can be bounded in

terms of either of the two.

We start with the spectral gap. This is simply the difference between the first

and second eigenvalues of the transition matrix P . (Note that the first eigenvalue of this

matrix is 1, with µη
Ψ as the left eigenvector and the constant vector as the right eigenvec-

tor.) Despite this natural definition of the spectral gap, we will work with an equivalent

characterization that is more convenient for our purposes. We recall the functional nota-

tions µη
Ψ(f) and Varη

Ψ(f), standing for the expected value and variance respectively of the

function f w.r.t. µη
Ψ. It will be convenient to think of µη

Ψ(f) as a function of η, defined by

µΨ(f)(η) = µη
Ψ(f), the conditional expectation of f . In a similar manner, VarΨ(f) is the

function representing the conditional variance of f . Let P be the heat-bath Markov chain

for the Gibbs distribution µη
Ψ based on the collection of blocks {Θi}. Define the Dirichlet

form of f w.r.t. P by

1
2

∑

σ1,σ2

µη
Ψ(σ1)P (σ1, σ2)(f(σ1) − f(σ2))

2 = 1
m

∑

Θ∈B(Ψ)

µη
Ψ(VarΘ(f))

def
= 1

mDη
Ψ(f). (2.5)

(The l.h.s. here is the general definition for any Markov chain; the equality holds when

specializing to the case of the heat-bath dynamics, as a simple calculation verifies.) Thus

Dη
Ψ(f) is the standard Dirichlet form scaled by a factor of m, and can be thought of as the

sum of “local variances” of f in the blocks Θ.

The (scaled) spectral gap compares the sum of local variances Dη
Ψ(f) to the vari-

ance of f :

cgap ≡ cgap(P ) = inf
f

Dη
Ψ(f)

Varη
Ψ(f)

= inf
f

∑
Θ∈B(Ψ) µη

Ψ(f)(VarΘ(f))

Varη
Ψ(f)

, (2.6)

where the infimum is over non-constant functions f .

We go on to define the log-Sobolev constant. We first extend the functional nota-

tion. For a non-negative function f : Ω → R
+, let Entη

Ψ(f) = µη
Ψ(f log f) − µη

Ψ(f) log µη
Ψ(f)

denote the entropy of f w.r.t. µη
Ψ. Notice that like Varη

Ψ, Entη
Ψ(f) is a (different) measure of

the dependency of f on the configuration in Ψ, conditioned on the configuration outside Ψ

being η. The (scaled) log-Sobolev constant compares the sum of local variances of
√

f with

the entropy of f :

csob ≡ csob(P ) = inf
f≥0

Dη
Ψ(

√
f )

EntηΨ(f)
, (2.7)
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where the infimum is over non-constant functions f . We note that csob can be approximately

expressed as a ratio of sum of “local entropies” to entropy in the same way that cgap is a

ratio of sum of local variances to variance. To see this, we observe that for every region Θ,

there exists a constant α > 0 (depending only on the potentials of the spin system and

the size of Θ) such that Varξ
Θ(

√
f) ≥ αEntξ

Θ(f) for every ξ. (It is always the case that

Varξ
Θ(

√
f) ≤ Entξ

Θ(f).) We therefore conclude that if the blocks Θ are of bounded size then

inf
f≥0

∑
Θ∈B(Ψ) µη

Ψ(EntΘ(f))

EntηΨ(f)
≥ csob ≥ α inf

f≥0

∑
Θ∈B(Ψ) µη

Ψ(EntΘ(f))

EntηΨ(f)
, (2.8)

where the constant α described above is w.r.t. the largest (bounded size) block.

We wish to emphasize that the characterization of cgap and csob given in (2.6)

and (2.8) respectively is especially useful for discussing relationships between mixing in

time and mixing in space because this characterization expresses both. The temporal inter-

pretation comes from standard bounds on the mixing time in terms of cgap and csob noted

below. On the other hand, the r.h.s. of (2.6) and (2.8) are quantities that depend on the

equilibrium state µη
Ψ. Specifically, these quantities measure how well variance (respectively

entropy) w.r.t. µη
Ψ can be approximated by the sum of “local” conditional variances (respec-

tively entropies). As we will see in Chapters 5, 6 and in Appendix A, how well the sum of

local variances approximates the global variance is intimately related to how close the spins

are to being independent, i.e., to what extent the Gibbs distribution mixes in space.

We note that we use a version of the spectral gap and log-Sobolev constant scaled

by the number of blocks m because scaled versions are easier to work with when the respec-

tive quantities of one dynamics are compared with those of another based on a different

set of blocks. Such comparisons are common in our analysis below. In addition, the scaled

quantities are in fact the spectral gap and log-Sobolev constant respectively of the continu-

ous time dynamics described before.

To put cgap and csob in a quantitative context, we note that it is easy to verify

that for the Glauber dynamics both are at most 1. This follows by considering the ratios

in (2.6) and (2.7) respectively, for a non-constant function f that depends on the spin of a

single site. For a dynamics based on a general collection of blocks, both quantities are at

most c provided that each site is covered by at most c blocks, as can be seen by considering

the same function f as above. However, both cgap and csob may be much smaller, and in

particular, may tend to 0 with the volume n. We say that cgap (respectively csob) for a
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boundary condition η is bounded if there exists α > 0 such that cgap(P ) ≥ α (respectively

csob(P ) ≥ α) for all regions Ψ, where P is the Markov chain for µη
Ψ.

As already mentioned above, cgap and csob give bounds on the rate of decay of

variance and entropy respectively, which implies that the mixing time is bounded in terms

of these quantities. These classical facts are expressed in the following theorem (see,

e.g., [Sal97]).

Theorem 2.9 Let P be a Markov chain for µτ
Ψ, and let πmin stand for the minimum non-zero

probability of a configuration under µη
Ψ. (Notice that πmin ≥ exp(−Cn) for some constant C

that depends only on the potentials of the spin system and the maximum degree ∆ of the

graph G.) Then for every σ ∈ Ωη
Ψ,

(i) ‖P km(σ, ·)−µη
Ψ‖ ≤

√
π−1

min exp(−cgapk) ≤ exp(Cn− cgapk), or equivalently, the mixing

time τ(ε) ≤ c−1
gap × Cm[n + log( 1

ε )];

(ii) ‖P km(σ, ·) − µη
Ψ‖ ≤ log(π−1

min) exp(−csobk) ≤ Cn exp(−csobk), or equivalently, τ(ε) ≤
c−1
sob × m log(Cn

ε ).

We conclude this section with a brief comparison of the different temporal mixing

notions presented here. An immediate consequence of Theorem 2.9 is that bounded csob

implies optimal temporal mixing. On the other hand, we note that optimal temporal mixing

implies that cgap is bounded. The reason for this is that at least for some σ, the variation

distance ‖P km(σ, ·)−µη
Ψ‖ decays (asymptotically) as exp(−cgapk). Thus, if optimal temporal

mixing holds, then cgap ≥ α, where α is the constant in Definition 2.7. We therefore

conclude that bounded csob is stronger then optimal temporal mixing, which is stronger than

bounded cgap (though we do not claim the relations to be strict). As for optimal projected

temporal mixing, in Chapter 5 we establish examples in which all of the above three notions

hold, but optimal projected temporal mixing does not. Thus, optimal projected temporal

mixing is strictly stronger than optimal temporal mixing and bounded cgap. We refrain

from claiming that optimal projected temporal mixing is strictly stronger than bounded csob

because the two notions may be incomparable, i.e., we are not able to rule out scenarios in

which optimal projected temporal mixing holds, but csob goes to zero with the volume n.
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Chapter 3

Criteria for uniqueness of the Gibbs

measure

In this chapter we focus on the question of uniqueness of the infinite volume Gibbs mea-

sure. As we discussed in Chapter 2, any spin-system admits at least one Gibbs measure;

however, a given system may admit multiple Gibbs measures, and one of the central issues

in statistical physics is determining whether a spin system admits a unique or multiple Gibbs

measures, corresponding to one or more possible equilibrium states. The motivation behind

this classification is locating the boundary (in terms of parameters of the system) between

the single-phase and multiple-phase regimes. This boundary marks a phase transition in

the macroscopic behavior of the system, a phenomenon that has additional physical man-

ifestations. For example, the Ising model on the square integer lattice Z
2 with no external

field admits a unique Gibbs measure when the temperature is above a known critical value

Tc = 1/βc, and two distinct Gibbs measures when the temperature is below Tc. One of these

Gibbs measures is the limit of µη
Ψ as Ψ goes to Z

2, where the boundary configuration η is

the all-(+) configuration. The other Gibbs measure is the same limit where η is the all-(−)

configuration.

As is apparent from Proposition 2.2, the uniqueness of the Gibbs measure is equiv-

alent to asymptotic independence between the configuration on a finite region and the

“boundary” configuration outside a large ball around this region, and thus the phase tran-

sition points described above correspond to emergence of long-range correlations (i.e., “or-

der”) in the system, or equivalently, to disappearance of the spatial mixing property ex-
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pressed in Proposition 2.2. This proposition also explains why discrete mathematicians and

probabilists are interested in the subject: the question of uniqueness can be viewed com-

binatorially as comparing two finite distributions (conditioned on two different boundary

configurations), and asking whether or not their difference goes to zero as the boundary

ball recedes to infinity.

It is often the case that the Gibbs distributions do not have succinct representa-

tions, so that analyzing the asymptotics directly is impossible. Thus, it is important to give

finite conditions which imply uniqueness of the Gibbs measure. By “finite conditions” we

mean conditions that depend only on distributions on regions (blocks) of at most some con-

stant size, and hence can be verified by direct calculation. Dobrushin [Dob70] was the first

to give such a condition, which has become widely known as the “Dobrushin Uniqueness

Condition.” This condition considers only the distributions at single sites. Later, Dobrushin

and Shlosman [DS85a] gave a more general condition which may depend on larger blocks

(though still of finite size). However, unlike the original Dobrushin condition, their condi-

tion is applicable only when the underlying graph of sites is an integer lattice Z
d. Additional

versions of the Dobrushin-Shlosman condition were given by others (e.g., Stroock and Ze-

garlinski [SZ92]), but still only in the context of Z
d. These conditions have turned out to

be very useful, since they can be verified by direct calculation for a number of models in

appropriate parameter ranges, thus implying uniqueness of the Gibbs measure in a rather

straightforward way.

In this chapter, we generalize the above conditions by considering both larger

blocks and any underlying graph. Naturally, all such conditions require that the influence

spins at different sites have on each other is “small” in an appropriate sense. However,

although they do not mention this explicitly, some of the conditions in the literature require

that the total influence on a site is small, while others require that the total influence of a site

is small. We make a clear distinction between these two cases, giving two dual conditions,

both of them in the generality described above.

Our proofs are combinatorial in nature and involve a dynamical analysis similar

to that carried out for analyzing mixing times of certain dynamics. We make heavy use

of couplings, especially the path coupling method [BD97]. Our conditions for uniqueness

essentially give the stronger property of weak spatial mixing (Definition 2.3). In addition,

natural extensions of them imply strong spatial mixing (Definition 2.4) and optimal projected

temporal mixing (Definition 2.8) of the corresponding dynamics uniformly in the boundary
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configuration. The fact that the question of uniqueness yields to an analysis of a dynamical

nature, as well as the fact that the conditions imply mixing in both space and time, is part

of the general theme in this thesis of connections between the two types of mixing. (We

will present more direct relationships between the two in Chapters 4 and 5.)

We apply our conditions to prove uniqueness of the Gibbs measure (and optimal

projected temporal mixing uniformly in the boundary condition) for various models. Al-

though the models we discuss are already known to admit a unique Gibbs measure by

other methods, for most of them our results extend the range of parameters for “finite size”

conditions of the Dobrushin type can be used to establish uniqueness. In addition, our ap-

plications illustrate how our two conditions may be used in different scenarios and clarify

the differences between them.

The organization of the rest of the chapter is as follows. In Section 3.1 we give

definitions specific to this chapter, background on coupling analysis, and precise statements

of our results. Section 3.2 contains the proofs of these theorems. In Section 3.3 we give

a few extensions of our results, including their implications for mixing in time. Finally, in

Section 3.4 we apply our conditions to various models, thus (re)proving that they admit a

unique Gibbs measure.

3.1 Notation and statements of results

In this section we extend some of the definitions given in Chapter 2, introduce notation

specific to this chapter, and state our precise results.

3.1.1 Update rules

The conditions we give (and their proofs) are based on notions and tools used in the con-

struction and analysis of local Markov chains similar to those defined in Section 2.3.1.

Recall that the definition of a dynamics is based on a collection of blocks {Θi}, and that

the definition in Section 2.3.1 was specific to heat-bath update. Here we extend this defi-

nition to consider updates other than heat-bath. However, we still require that the update

be “local”, i.e., that the result of an update of a block Θ depends only on the configuration

on Θ ∪ ∂Θ. (Notice that we allow for dependence on Θ.) Naturally, any local update rule

for a specification µ has to be consistent with µ, i.e., the Gibbs distributions have to be sta-
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tionary under the update rule. The formal definition of a general local update rule is given

below.

Let {Θi}i=1,2,... be a collection blocks that cover V finitely many times as in Sec-

tion 2.3.1. In this chapter, we allow the blocks to have different likelihoods, and thus

each Θi is assigned a positive weight wi. (In the corresponding dynamical process, the

updated block is chosen at random from some finite subset of the collection, and the prob-

ability of choosing Θi is proportional to wi.)

Once a weighted collection of blocks is given, the second ingredient needed in

order to complete the specification of an update rule is the collection of distributions that

govern the result of an update. Clearly, the distribution over resulting configurations de-

pends on the current configuration. Thus, we need to specify a collection of distributions

κ = {κτ
i }, indexed by the current configuration τ and the index i of the block to be updated.

These distributions have to be “local” and consistent with the Gibbs measure:

Definition 3.1 We say that κ is a local update rule for the specification µ based on the collec-

tion of blocks {Θi} if κ = {κτ
i } is a collection of probability distributions such that:

1. for every configuration τ and every i, κτ
i is a probability distribution on Ωτ

Θi
;

2. the projections of κτ
i and κσ

i on SΘi are the same whenever τ and σ agree on Θi ∪ ∂Θi,

i.e., the distribution κτ
i (on the configurations in Θi) depends only on τΘi∪∂Θi

.

3. for every feasible τ and i, µτ
Θi

is stationary under κi, where the notion of stationarity

was explained following equation (2.3);

Property 1 guarantees that only Θi is updated under κτ
i while the rest of the configuration

remains unchanged. Property 2 expresses the locality requirement, which is natural since

the Gibbs distribution on Θi is also local, i.e., depends only on ∂Θi. Property 3 ensures

that the update rule is consistent with the Gibbs distribution1. We wish to emphasize the

following facts regarding local update rules. First, unlike µ, we always require that κτ
i

is defined even for infeasible τ . However, the stationarity requirement does not apply to

infeasible configurations, and thus, unless τ agrees with some feasible configuration on Θi∪
∂Θi, the specification µ imposes no restriction on the distribution κτ

i . Second, the fact

that µτ
Θi

is stationary under κi for every feasible τ implies by (2.3) that, for any Ψ ⊇ Θi

1Notice that in contrast to the discussion in Section 2.3.1, here we only require that the Gibbs distribution

is stationary w.r.t. the update and not that it is the unique stationary distribution.
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and every feasible η, µη
Ψ is stationary under κi, i.e., any Gibbs distribution in any region

that includes Θi is unaffected by an update of Θi. Third, unlike µτ
Θi

, κτ
i may depend on

the configuration inside Θi (as well as the configuration on ∂Θi). Nevertheless, a natural

choice for κτ
i is simply µτ

Θi
, which corresponds to the original definition of the heat-bath

dynamics in Section 2.3.1. However, other possible and reasonable choices exist. As an

example of other possible local update rules, consider a “Metropolis” update where κτ
i is

the distribution resulting from the following process. First, update the configuration in Θi

by choosing it u.a.r. from SΘi; suppose the resulting configuration is σ. Then, output σ

(“accept”) with probability min
{

exp(−HΘi
(σ))

exp(−HΘi
(τ)) , 1

}
and otherwise output τ (“reject”). There

are other examples of more sophisticated update rules which are specific to certain models

(e.g., the update rule for proper colorings described in [Vig00], or the one for independent

sets [DG00] which we discuss in Section 3.4).

Since (by property 1 of Definition 3.1) the spin of a given site may change only

when updating a block that includes this site, we will often need to refer to the subset of

such blocks. Recall from Section 2.3.1 that for a region Λ, B(Λ) := {i | Λ ∩ Θi 6= ∅}. We

write B(x) as shorthand for B({x}) and notice that B(Λ) =
⋃

x∈Λ B(x). Finite subsets

of block indices arise throughout our discussion, and for such a subset S we write wS :=
∑

i∈S wi for its aggregated weight. As a final note on blocks, we say that the collection {Θi}
is of bounded diameter if there exists a constant r such that the diameter of any block Θi is

at most r.

3.1.2 Coupling

A common tool for analyzing Markov chains that use a local update rule is to couple the

updates of Θi starting from two different configurations. A coupling of two distributions ν1

and ν2 is any joint distribution whose marginals are ν1 and ν2. For any two configurations σ

and ξ that differ in exactly one site, let Ki(σ, ξ) be a coupling of κσ
i and κξ

i . (These atomic

couplings determine a coupling K(σ, ξ) for arbitrary pairs of configurations σ, ξ that differ

in more than one site, using the path coupling construction explained in Section 3.2.2).

If σ and ξ agree on Θi ∪ ∂Θi, Ki(σ, ξ) is always defined as the coupling where the two

configurations agree on Θi with probability 1. If κ is a local update rule for µ, we call the

collection {Ki}, denoted K, a coupled update rule for µ. From here onwards, when we refer

to a coupled update rule K, we assume it implicitly specifies the collection of blocks {Θi},
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their weights {wi} and the local update rule κ according to which K is defined.

Our aim is to give conditions on K that imply uniqueness of the Gibbs measure

for the specification µ. Namely, our theorems will be of the form: “If there exists a coupled

updated rule K for the specification µ such that K satisfies certain conditions, then there

is a unique Gibbs measure that is consistent with µ.” The conditions on K will require that

under a coupled update, the average “distance” between the two coupled configurations

is small. Our notion of distance is specified per site. Let ρ = {ρx}x∈V be a collection of

metrics on the spin space S (one metric for each site in the graph G). We write ρx(σ, ξ) for

ρx(σx, ξx), and abuse this notation when considering a coupling Q by writing ρx(Q) for the

average distance (w.r.t. the joint distribution Q) between the two coupled configurations.

Our notion of distance is extended to regions by summing over single sites, i.e., we let

ρΛ(σ, ξ) :=
∑

x∈Λ ρx(σ, ξ). To illustrate the above notion of distance, we note that in the

applications given in Section 3.4 the metrics we use are of the form ρx = ux · ρδ, where

ux ∈ R
+ is a weight associated with the site x and ρδ(s1, s2) = 1 if s1 6= s2 (and naturally,

ρδ(s1, s2) = 0 if s1 = s2). In this case, ρx(Q) is just ux times the probability that the spins

at x differ under the coupling Q, and ρΛ(Q) is the average weighted Hamming distance

between the two coupled configurations in Λ.

Our theorems below consider collections of metrics with the following two natural

properties. The first property states that the distance at any single site is bounded by a

uniform constant: we say that a collection of metrics {ρx} is bounded if

sup
x∈V

max
s1,s2∈S

ρx(s1, s2)

is finite. The second, stronger property states that the total distance in arbitrarily large

regions is bounded by a uniform constant: we say that a collection of metrics ρ = {ρx} is

summable if ∑

x∈V

max
s1,s2∈S

ρx(s1, s2)

is finite.

3.1.3 Results

Once a coupled update rule K and a collection of metrics ρ = {ρx} are fixed, we are in a

position to define the influence of a site y on another site x (w.r.t. K and ρ) in an analogous

way to the definition of the “matrix of dependencies” in Dobrushin’s condition [Dob70].
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Definition 3.2 For a given coupled update rule K and collection of metrics ρ, define the in-

fluence of site y on site x, denoted Ix←y, as the smallest constant for which, for all pairs of

configurations (σ, ξ) s.t. σ = ξ off y,

∑

i∈B(x)

wiρx(Ki(σ, ξ)) ≤ ρy(σ, ξ)Ix←y.

The motivation for the above definition is that Ix←y /wB(x) is an upper bound on the av-

erage distance between the coupled spins at x (relative to the initial distance between the

spins at y) at the end of the following procedure: starting from two configurations that may

differ only at y, choose a block Θi ∈ B(x) with probability wi /wB(x) and perform a coupled

update of Θi. Note that Ix←y = 0 if y /∈ ⋃i∈B(x)(Θi ∪ ∂Θi) (i.e., only sites in or adjacent to

blocks containing x may have non-zero influence on x). We write Ix← :=
∑

y Ix←y for the

sum of influences of all sites on the site x (and notice by the previous remark that this sum

is finite). Our first theorem states that, if the normalized total influence on every site w.r.t.

a bounded collection of metrics is less than 1, then the Gibbs measure is unique.

Theorem 3.3 If a specification µ admits a coupled update rule K together with a bounded

collection of metrics ρ for which

sup
x

{
Ix←

wB(x)

}
< 1,

then the Gibbs measure for µ is unique; furthermore, if the collection of blocks that K is based

on is of bounded-diameter, then µ has weak spatial mixing.

We note that our requirement that the metric collection be bounded is necessary. In our

discussion of applications in Section 3.4 we give an example of a specification that ad-

mits multiple Gibbs measures but for which there exists a coupled updated rule and an

unbounded metric collection that satisfy the condition in Theorem 3.3.

Remark: Previously known conditions involving the total influence on a site are the single-site

Dobrushin condition [Dob70] and the condition referred to as DSU(Y ) by Stroock and Zegarlin-

ski [SZ92]. Both conditions only consider the case in which ρx = ρδ for all x, where ρδ was defined

at the end of Section 3.1.2. In addition, the Dobrushin condition only considers the case in which

each Θi is a single site. The condition of Stroock and Zegarlinski, while considering blocks of larger

size as we do, only considers the special case where the underlying graph G is an integer lattice Z
d.

Thus, our Theorem 3.3 is a generalization of both Dobrushin’s condition and the Stroock and Zegar-

linski one.
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In our second theorem we consider a natural dual condition, namely, that the total

influence of every site is small. Following the line established in the previous condition, we

write I←y for the total influence of site y. Although it might seem natural to define I←y as
∑

x Ix←y, the appropriate definition turns out to be a slightly more relaxed one obtained by

changing the order of quantification over pairs of configurations:

Definition 3.4 For a given coupled update rule K and collection of metrics ρ, define the total

influence of site y, denoted I←y, as the smallest constant for which, for all pairs of configura-

tions (σ, ξ) s.t. σ = ξ off y,

∑

i

wiρΘi(Ki(σ, ξ)) ≤ ρy(σ, ξ)I←y.

Again, there are only finitely many non-zero terms in the sum since there are only finitely

many blocks Θi which are affected by y. The relevance of this definition comes from the

fact that I←y is related to the average total distance resulting from an update of a block

randomly chosen from those affected by y, when starting from two configurations that dif-

fer only at y. (The exact relationship between I←y and this distance is rather involved; the

detailed bound is given in Section 3.2). To see the connection to the previous definition

of influence, notice that I←y ≤ ∑
x Ix←y. In fact, the only difference between these two

expressions is that in
∑

x Ix←y the quantification over pairs of configurations is taken sep-

arately for each x, while in the definition of I←y the quantification is taken once, before

summing over x (the summation over x comes from the expansion of ρΘi).

Compared to the condition in Theorem 3.3, our condition for uniqueness based on

the influence of a site places a stronger restriction on the metric collection we are allowed

to use by requiring that it be summable.

Theorem 3.5 If a specification µ admits a coupled update rule K together with a summable

collection of metrics ρ that satisfy supy wB(y) < ∞, infy wB(y) > 0 and

sup
y

{
I←y

wB(y)

}
< 1,

then the Gibbs measure for µ is unique; furthermore, if the collection of blocks that K is based

on is of bounded-diameter, then µ has weak spatial mixing.

Again, the requirement that the metric collection be summable is necessary as is illustrated

in Section 3.4, where we also show that the condition supy wB(y) < ∞ is necessary. It is
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not clear whether the requirement that infy wB(y) > 0 is necessary or just an artifact of our

proof.

Remarks:

• A previously known condition involving the total influence of a site was given by Dobrushin

and Shlosman [DS85a]. However, they only considered the case where the underlying graph G

is an integer lattice Z
d and the collection of blocks {Θi} is the set of all translations of some

fixed region Θ. In addition, in their condition there is freedom to specify only one metric ρ,

so that ρx = ρ for all x ∈ Z
d. Notice that this means, in our language, that the resulting

collection of metrics is not summable, which at first sight seems not to fit the framework of

Theorem 3.5. However, Theorem 3.5 can still be seen as a generalization of the Dobrushin-

Shlosman condition as we now explain. Suppose, as in the Dobrushin-Shlosman setting, that

there exists a coupled updated rule K and a single metric ρ for which the condition in Theo-

rem 3.5 holds with ρx = ρ for all x ∈ Z
d, and that the diameter of the blocks Θi used by K is

bounded by some constant r. We can then construct a slightly modified collection of metrics

by letting ρ′x = (1 + ε)−|x|ρ, where |x| stands for the distance of the site x from the origin

of Z
d and ε > 0 is a small enough constant. Since the volume of a ball around the origin of

Z
d grows subexponentially with the ball’s radius, ρ′ is clearly summable for any ε > 0. On

the other hand, it is not too difficult to see that if the condition in Theorem 3.5 holds w.r.t. ρ,

and if ε is small enough, then the condition also holds with ρ replaced by ρ′. The reason for

this is that the influence of a site can increase by a factor of at most (1 + ε)r when replac-

ing ρ by ρ′. In fact, in their proof Dobrushin and Shlosman use a similar construction to the

above. Furthermore, the fact that in their condition the metric is the same for all sites restricts

their condition to models on Z
d (or, more precisely, to models on graphs of sub-exponential

growth). By allowing different metrics for different sites (but requiring that the collection is

summable) we are able to handle arbitrary graphs with no restriction on their geometry.

• At this point it is also worth mentioning that in the literature, the Dobrushin-Shlosman condi-

tion is often referred to as a generalization of the single-site Dobrushin condition although in

fact the two conditions are dual in nature. The reason for this misconception is that the

Dobrushin-Shlosman condition was only stated for translation invariant update rules (for

ease of notation), allowing the authors to write it in terms of the total influence on a site

(or on a block) even though the property they used in the proof is that the total influence

of a site is small (inequalities 2.24 and 2.26 in the proof of Lemma 2.2 in [DS85a]). To

clarify this point further, notice that for specifications on Z
d, when the coupled update rule

is translation invariant and the metrics ρx are uniform in x, then the matrix of dependen-

cies is translation invariant as well, i.e., Ix←y depends only on x − y (the difference be-

tween the two d-dimensional vectors x and y). Therefore,
∑

x Ix←y =
∑

y Ix←y and thus
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supy I←y ≤ supy

∑
x Ix←y = supx

∑
y Ix←y = supx Ix←. In other words, in this setting, if

the condition involving the total influence on a site holds (Theorem 3.3) then so does the

condition involving the total influence of a site (Theorem 3.5).

• In the context of Markov chains, the duality between influence on and influence of a site was

already mentioned in [BD97], where it was referred to as a duality between conditions on the

rows and on the columns of the dependency matrix.

• As we will discuss in more detail in section 3.3.2, a strengthening of the conditions in Theo-

rems 3.3 and 3.5 implies that strong spatial mixing holds, and that the dynamics based on the

update rule κ has optimal projected temporal mixing uniformly in the boundary condition.

This is in fact part of a general relationship between these two notions of mixing that will be

discussed in Chapter 4. (We also mention that it is natural to define a continuous time infi-

nite volume dynamics based on the update rule κ, in a similar manner to the infinite volume

dynamics mentioned in Section 2.3.2. For such a dynamics boundary conditions do not exist,

i.e., there is no problem with sites being close to the boundary, and the conditions given in

the theorems here are enough for optimal projected temporal mixing to hold.)

3.2 Proofs

3.2.1 Framework

Our theorems state that, under certain conditions, the Gibbs measure for a given specifica-

tion µ is unique. Thus, following Proposition 2.2, we will show that if the hypothesis of the

theorems is true then, for every finite region Λ, we can find an infinite sequence of finite

regions {Λ`}`=0,1,2,... such that Λ = Λ0 ⊆ Λ1 ⊆ . . . ⊆ Λ` ⊆ . . ., and for any two (boundary)

configurations η and τ , ‖µη
Λ`

− µτ
Λ`
‖Λ → 0 as ` → ∞.

The construction of the sequence {Λ`} depends on the collection of blocks {Θi}
used by the coupled update rule given in the hypothesis of the theorems. For a subset of

block indices S, let Φ(S) :=
⋃

i∈S(Θi ∪ ∂Θi) stand for the region of sites that may influence

the result of an update of a block from S. Then the sequence {Λ`} is defined recursively as

Λ0 = Λ and Λ`+1 = Φ(B(Λ`)) (see Figure 3.1). The important property of this sequence is

that, if x ∈ Λ`, then all the sites that have non-zero influence on x (via a coupled updated)

are included in Λ`+1. Notice also that, since every site is included in at least one block Θi,

then Ψ ⊆ Φ(B(Ψ)) and therefore Λ` ⊆ Λ`+1. It is also easy to see that the sequence {Λ`}
covers V , i.e., that every site x ∈ V is in some Λ`.
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Λl

+1lΛ

Θi

Θi

Figure 3.1: Recursively constructing the sequence of regions {Λ`}. The region Λ`+1 contains

Θi ∪ ∂Θi for each Θi that intersects Λ`.

The proofs of both our theorems will take the following form. For an arbitrary

finite region Λ and arbitrary boundary configurations η and τ , using the given coupled

update rule we will construct a coupling Q` of µη
Λ`

and µτ
Λ`

such that ρΛ(Q`) is exponentially

small in `, and in particular, vanishes as ` increases. This will conclude the proofs since, if σ

and ξ stand for the two coupled configurations under Q`, then

‖µη
Λ`

− µτ
Λ`
‖Λ ≤ PrQ`

(σΛ 6= ξΛ) ≤ ρΛ(Q`)

minσΛ 6=ξΛ ρΛ(σΛ, ξΛ)
, (3.1)

and minσΛ 6=ξΛ ρΛ(σΛ, ξΛ) > 0 because ρΛ is a metric on SΛ. Notice that the weak spatial

mixing part of both theorems will follow because if all the blocks in the collection {Θi}
are of diameter at most r, then Λ` includes the ball of radius ` · r around Λ. In particular,

for any two regions Λ ⊆ Ψ, Ψ includes Λ` for ` = dist(Λ, ∂Ψ)/r. Therefore, from the fact

that ρΛ(Q`) is exponentially small in ` and from (3.1), it will follow that ‖µη
Ψ − µτ

Ψ‖Λ is

exponentially small in dist(Λ, ∂Ψ), as required.

3.2.2 Path coupling

When a coupled update rule K is given then Ki(σ, ξ) is specified only for pairs (σ, ξ) that

differ in a single site. Based on these atomic couplings, in this subsection we extend this def-

inition to coupled updates for arbitrary pairs of starting configurations. Before doing so, we

set notation for an update of a random block. Let S be a finite set of natural numbers index-

ing blocks. We write κσ
S := (

∑
i∈S wiκ

σ
i ) /wS for the distribution resulting from updating a

random block from S starting from configuration σ, where the probability of updating Θi
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for i ∈ S is proportional to wi. Similarly, we write KS(σ, ξ) := (
∑

i∈S wiKi(σ, ξ)) /wS for a

coupled update of a random block from the set S starting from configurations σ and ξ that

differ at a single site. Notice that KS(σ, ξ) is indeed a coupling of κσ
S and κξ

S .

We now extend the definition of KS to arbitrary pairs of starting configurations.

We first consider pairs (σ, ξ) that agree on Φ(S) (but may differ in arbitrarily many sites

elsewhere). Notice that such pairs induce the same distribution on configurations of Φ(S)

when updating a random block from S, and thus we define KS(σ, ξ) as the trivial coupling

where the two resulting configurations agree on Φ(S) with probability 1. For general σ

and ξ, KS is defined using a path coupling. Path couplings (in a more general setting) were

introduced in [BD97] where they were used to upper bound the mixing time of certain

Markov chains, although similar ideas were already used in the proofs of the uniqueness

conditions in [Dob70] and [DS85a].

The idea of a path coupling is to interpolate over differences at single sites, thus

reducing the definition of the coupling for general starting pairs (σ, ξ) to those that differ at

exactly one site. Although in the literature the interpolation is usually taken only over the

sites at which σ and ξ differ, here, in order to ease notation, we interpolate over all sites in

Φ(S). Let z1, z2, . . . , zn be an enumeration of the sites in Φ(S), where n = |Φ(S)|. Given σ

and ξ, we then construct a sequence of configurations σ(0), η(1), . . . , σ(n) such that σ(0) = σ,

and for 1 ≤ j ≤ n, σ
(j)
x = σ

(j−1)
x for all x 6= zj while σ

(j)
zj = ξzj . Observe that for every

1 ≤ j ≤ n, σ(j) agrees with ξ on {z1, . . . , zj} and with σ on {zj+1, . . . , zn}. In particular,

σ(n) agrees with ξ on Φ(S). Furthermore, σ(j−1) and σ(j) may only disagree at zj , and

σ(j) = σ(j−1) if and only if σ and ξ assign the same spin to zj .

Using the above notation, observe that the couplings KS(σ(j−1), σ(j)) are already

defined for all 1 ≤ j ≤ n, as is the (trivial) coupling KS(σ(n), ξ). We go on to construct the

coupling KS(σ, ξ). Recall that KS(σ, ξ) should be a coupling of κσ
S and κξ

S , i.e, a coupling of

the update of a random block Θi, where i ∈ S, starting from σ and ξ respectively. To con-

struct this coupling, first choose a configuration τ (0) from κσ
S . Then, choose a configuration

τ (1) from κσ(1)

S according to the coupling KS(σ, σ(1)) conditioned on τ (0) being the first con-

figuration in the pair. It is easy to verify that the unconditional distribution of τ (1) is indeed

κσ(1)

S . Continuing inductively, in step j, choose a configuration τ (j) from κσ(j)

S according

to the coupling KS(σ(j−1), σj) conditioned on τ (j−1). Finally, choose a configuration τ (n+1)

from κξ
S according to the trivial coupling KS(σ(n), ξ) conditioned on τ (n). (The last coupling

changes the configuration outside Φ(S) from σ to ξ). Notice that the joint distribution of
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τ (0), τ (1), . . . , τ (n+1) is a simultaneous coupling of the distributions κσ
S , κσ(1)

S , . . . , κσ(n)

S , κξ
S .

We define KS(σ, ξ) as the joint distribution of τ (0) and τ (n+1), which is indeed a coupling of

κσ
S and κξ

S .

The coupling KS(σ, ξ) defined above has the following important property, which

can be verified using the triangle inequality for metrics together with the fact that in the

above construction the joint distribution of τ (j−1) and τ (j) is KS(σ(j−1), σ(j)), by definition.

For every region ∆ ⊆ Φ(S),

ρ∆(KS(σ, ξ)) ≤
n∑

j=1

ρ∆(KS(σ(j−1), σ(j))). (3.2)

Now that a coupled update is defined for any two starting configurations, we can

define an operator on couplings which, for a given coupling Q, specifies the the result of a

coupled update when starting from two configurations chosen from Q.

Definition 3.6 Let Q be a coupling of two probability distributions ν1 and ν2 on Ω. Define

FS(Q) := Q · KS =
∑

σ,ξ

Q(σ, ξ)KS(σ, ξ),

where Q(σ, ξ) is the measure of the pair (σ, ξ) under the joint distribution Q. Equivalently,

viewing Q as a probability distribution on Ω×Ω and KS as a Markov kernel on Ω×Ω, FS(Q)

stands for the distribution resulting from taking one step in the Markov chain defined by KS

when the starting state is chosen according to Q.

Remark: Even though the space of pairs of configurations is infinite, we used a finite sum notation

in Definition 3.6 since in what follows Q will always be a finite distribution, i.e., the support of Q

will be a finite subset of pairs of configurations.

Notice that if K is a coupled update rule for µ, and if Q is a coupling of µη
Ψ and

µτ
Ψ for some Ψ ⊇ ⋃i∈S Θi and any two (boundary) configurations η and τ , then FS(Q) is a

coupling of these two distributions as well. This is because both distributions are stationary

under an update of Θi for any i ∈ S.

As a final piece of notation, F t
S stands for t applications of FS and is the analogue

of performing t coupled steps in a Markov chain.

3.2.3 Influence on a site

In this subsection we give the proof of Theorem 3.3, namely, that when the influence on

every site is small, the Gibbs measure is unique. Theorem 3.3 is an immediate consequence
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of the following theorem.

Theorem 3.7 Let µ be a specification, K a coupled updated rule for µ and ρ = {ρx} a col-

lection of metrics. For any δ > 0, let α = δ + supx

{
Ix← /wB(x)

}
, where Ix← is defined

w.r.t. K and ρ. Then, for every finite region Λ, every positive integer ` and any two boundary

configurations η and τ , there is a coupling Q` of µη
Λ`

and µτ
Λ`

s.t. ρΛ(Q`) ≤ c|Λ|α`, where

c = maxx∈Λ`
maxs1,s2∈S ρx(s1, s2) and the definition of Λ` is as in Section 3.2.1.

Notice that if supx

{
Ix← /wB(x)

}
< 1 as in the hypothesis of Theorem 3.3 then there exists

δ > 0 such that α = δ + supx Ix← /wB(x) < 1. Furthermore, for a bounded collection of

metrics (as in the hypothesis of Theorem 3.3), c = maxx∈Λ`
maxs1,s2∈S ρx(s1, s2) is bounded

by a constant independent of `. Thus, Theorem 3.3 follows from Theorem 3.7 as explained

at the end of Section 3.2.1.

The proof of Theorem 3.7 is based on the following lemma, which for an update

of a random block gives an upper bound on the average distance at a site x as a function of

the initial distances in the neighborhood of x.

Lemma 3.8 Fix a coupled updated rule K and a collection of metrics ρ. Let Q be any coupling,

x any site and S any finite subset of block indices such that B(x) ⊆ S. Then

ρx(FS(Q)) ≤
(

1 − wB(x)

wS

)
ρx(Q) +

Ix←
wS

sup
y∈Φ(B(x))

ρy(Q). (3.3)

Proof: The idea here is that the first term on the r.h.s. of (3.3) represents the contribution

to the distance at x when the updated block is not in B(x) (in which case the two spins

at x remain unchanged as does the distance at x) while the second term represents the

contribution to the distance when the updated block is one from B(x), in which case the

distance can be bounded by the total influence on x times the maximum distance of a site

that may influence x, as explained below. We proceed with the formal proof. By definition,

ρx(FS(Q)) = ρx


∑

σ,ξ

Q(σ, ξ)KS(σ, ξ)


 =

∑

σ,ξ

Q(σ, ξ) ρx(KS(σ, ξ)).

We now recall the notation used in the construction of the path coupling in Section 3.2.2,

i.e., let z1, . . . , zn enumerate the sites of Φ(S), where n = |Φ(S)|, and for given σ and ξ let

σ = σ(0), . . . , σ(n) be the corresponding sequence of configurations. Then, using (3.2),

ρx(FS(Q)) ≤
∑

η,ξ

Q(σ, ξ)
n∑

j=1

ρx(KS(σ(j−1), σ(j))) =
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=
1

wS

∑

σ,ξ

Q(σ, ξ)

n∑

j=1


 ∑

i∈S\B(x)

wiρx(Ki(σ
(j−1), σ(j))) +

∑

i∈B(x)

wiρx(Ki(σ
(j−1), σ(j)))




=
1

wS

∑

σ,ξ

Q(σ, ξ)


ρx(σ, ξ)

∑

i∈S\B(x)

wi +

n∑

j=1

∑

i∈B(x)

wiρx(Ki(σ
(j−1), σ(j)))




=

(
1 − wB(x)

wS

)
ρx(Q) +

1

wS

n∑

j=1

∑

σ,ξ

Q(σ, ξ)
∑

i∈B(x)

wiρx(Ki(σ
(j−1), σ(j))),

where we made use of the facts that for i /∈ B(x), ρx(Ki(σ
(j−1), σ(j)) = ρx(σ(j−1), σ(j)) and

that
∑n

j=1 ρx(σ(j−1), σ(j)) = ρx(σ, ξ). What remains to be shown is that

n∑

j=1

∑

σ,ξ

Q(σ, ξ)
∑

i∈B(x)

wiρx(Ki(σ
(j−1), σ(j))) ≤ Ix← sup

y∈Φ(B(x))
ρy(Q). (3.4)

Notice, however, that since σ(j−1) and σ(j) may differ only at zj then

∑

i∈B(x)

wiρx(Ki(σ
(j−1), σ(j))) ≤ ρzj (σ

(j−1), σ(j))Ix←zj .

Thus, the l.h.s. of (3.4) is bounded by

n∑

j=1

Ix←zj

∑

σ,ξ

Q(σ, ξ)ρzj (σ
(j−1), σ(j)) =

n∑

j=1

Ix←zj

∑

σ,ξ

Q(σ, ξ)ρzj (σ, ξ)

=
n∑

j=1

Ix←zjρzj (Q)

≤ sup
y∈Φ(B(x))

{ρy(Q)}
∑

y

Ix←y

= Ix← sup
y∈Φ(B(x))

ρy(Q),

where we used the fact that Ix←y = 0 for y /∈ Φ(B(x)).

Lemma 3.8 is useful since it uses only first order information about Q in order to

bound ρx(FS(Q)), i.e., we only need to know bounds on the average distances at single

sites regardless of how these distances depend on each other under Q. In the proof of

Theorem 3.7 below, we use Lemma 3.8 iteratively to improve the bounds on single site

distances.

Proof of Theorem 3.7: For the δ given in the theorem, let

t` =

⌈
wB(Λ`−1)

minx∈Λ`−1
wB(x)

ln
1

δ

⌉
.
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We will show that for any coupling Q, every 0 ≤ k ≤ `, x ∈ Λ`−k, and t ≥ kt`,

ρx(F
t
B(Λ`−1)(Q)) ≤ cαk, (3.5)

where c and α are as defined in Theorem 3.7. The theorem follows from (3.5) as explained

next. Take any coupling Q of µη
Λ`

and µτ
Λ`

(for example, the product coupling). Then, for

every t, F t
B(Λ`−1)(Q) is also a coupling of µη

Λ`
and µτ

Λ`
because the update rule is consistent

with µ and all the blocks that might be updated in the process are included in Φ(B(Λ`−1)) =

Λ` by definition. Thus, by setting t = `t` we get a coupling Q` for which ρx(Q`) ≤ cα` for

every x ∈ Λ0 = Λ. Hence, ρΛ(Q`) ≤ c|Λ|α`, as required.

We go on to prove (3.5). Notice that the bound in (3.5) improves as time increases

but only when the distance of x from the boundary increases as well, i.e., we only have to

consider sites in Λ`−k. The idea of the proof is that once we have established a bound for

sites in Λ`−k, we can improve this bound for a site x ∈ Λ`−k−1 by updating a random block

from the ones that cover x, since all the sites that influence x are in Λ`−k. The chosen time

parameter ensures that we will indeed update a block from those that cover x with high

probability.

The formal proof proceeds by induction on k. The base case (k = 0) is clear since

ρx(Q) ≤ maxs1,s2∈S ρx(s1, s2) ≤ c for every x ∈ Λ` by definition of c. We assume (3.5) for k

and show for k+1. Fix an arbitrary x ∈ Λ`−k−1. We have to show that for every t ≥ (k+1)t`,

ρx(F t
B(Λ`−1)(Q)) ≤ cαk+1. Notice that y ∈ Λ`−k for every y ∈ Φ(B(x)) and hence we can

use the induction hypothesis together with Lemma 3.8 to get that, for every t > kt`,

ρx(F t
B(Λ`−1)(Q)) ≤

(
1 −

wB(x)

wB(Λ`−1)

)
ρx(F t−1

Λ`−1
(Q)) +

Ix←
wB(Λ`−1)

cαk.

Therefore,

ρx(F t
B(Λ`−1)(Q)) − Ix←

wB(x)
cαk ≤

(
1 −

wB(x)

wB(Λ`−1)

)[
ρx(F t−1

B(Λ`−1)(Q)) − Ix←
wB(x)

cαk

]

and hence, since by the induction hypothesis ρx(F kt`
B(Λ`−1)(Q)) ≤ cαk, then for all t ≥ kt`,

ρx(F
t
B(Λ`−1)(Q)) ≤ Ix←

wB(x)
cαk +

(
1 −

wB(x)

wB(Λ`−1)

)t−kt`

cαk.

In particular, for all t ≥ (k + 1)t`,

ρx(F t
B(Λ`−1)(Q)) ≤ Ix←

wB(x)
cαk + δcαk ≤ cαk+1.

This concludes the proof of (3.5) and thus completes the proof of Theorem 3.7.
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3.2.4 Influence of a site

In this section we prove Theorem 3.5, namely, that when the influence of every site is small,

the Gibbs measure is unique. In contrast to the proof in the previous section, where we

used the bound on the influence on a site to show that the distance at every site decreases

exponentially with distance from the boundary, here we will use the bound on the influence

of a site to show that the total distance decreases exponentially with distance. Theorem 3.3

is an immediate consequence of the following theorem.

Theorem 3.9 Let µ be a specification, K a coupled updated rule for µ and ρ = {ρx} a collec-

tion of metrics. For any δ > 0, let α = δ + supy {I←y} /
(
supy {I←y} + infy

{
wB(y) − I←y

})
,

where I←y is defined w.r.t. K and ρ. Then, for every region Λ, any positive integer ` and any two

boundary configurations η and τ , there is a coupling Q of µη
Λ`+1

and µτ
Λ`+1

s.t. ρΛ(Q) ≤ cα`,

where c = maxσ,ξ ρΛ`
(σ, ξ) and Λ` is as defined in Section 3.2.1.

Notice that when ρ is summable then the combination of the conditions supy wB(y) < ∞,

infy wB(y) > 0 and supy

{
I←y /wB(y)

}
< 1 in the hypothesis of Theorem 3.5 is equivalent to

the condition supy {I←y} /
(
supy {I←y} + infy

{
wB(y) − I←y

})
< 1. Therefore, for K and ρ

as in Theorem 3.5, there exists δ > 0 for which α < 1, where α is as defined in Theorem 3.9.

Furthermore, the summability of the collection of metrics in Theorem 3.5 implies that c =

maxσ,ξ ρΛ`
(σ, ξ) is bounded by a constant independent of `. Thus, Theorem 3.5 follows from

Theorem 3.9 as explained at the end of Section 3.2.1.

The proof of Theorem 3.9 is based on the following lemma, which is similar in

spirit to Lemma 3.8, but rather than bounding the average distance at a single site, here

we bound the average total distance in a region ∆ as a function of the initial average total

distance in the neighborhood of ∆, when updating of a random block.

Lemma 3.10 Fix a coupled updated rule K and a collection of metrics ρ. Let Q be any

coupling, ∆ any region and S any finite subset of block indices such that B(∆) ⊆ S. Let

MAX = maxy∈Φ(B(∆)) {I←y} and MIN = miny∈Φ(B(∆))

{
wB(y) − I←y

}
. Then

ρ∆(FS(Q)) ≤
(

1 − MAX + MIN

wS

)
ρ∆(Q) +

MAX

wS
ρΦ(B(∆))(Q). (3.6)

Proof: We start by using the path coupling bound (3.2) to get

ρ∆(FS(Q)) ≤
∑

σ,ξ

Q(σ, ξ)
n∑

j=1

ρ∆(KS(σ(j−1), σ(j))), (3.7)
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where n = |Φ(S)| and the sequence of configurations σ(j) is as defined in the construction

of the path coupling. In turn, we can bound ρ∆(KS(σ(j−1), σ(j))) depending on the location

of zj (the only site at which σ(j−1) and σ(j) may differ) as follows:

ρ∆(KS(σ(j−1), σ(j))) ≤ ρzj (σ
(j−1), σ(j)) ×





I←zj /wS + 1 − wB(zj ) /wS if zj ∈ ∆;

I←zj /wS if zj ∈ Φ(B(∆)) \ ∆;

0 if zj /∈ Φ(B(∆)).

(3.8)

Notice that (3.8) follows from the fact that KS = (
∑

i∈S wiKi) /wS , the definition of I←zj

and the following four observations. First, ρ∆(Ki(σ
(j−1), σ(j))) ≤ ρΘi(Ki(σ

(j−1), σ(j))) if

zj ∈ Θi because all the sites outside Θi remain unchanged and thus the coupled spins

of all sites outside Θi agree with certainty in the coupling Ki(σ
(j−1), σ(j)). Second, when

zj ∈ ∆ \ Θi then in addition to the distance at Θi, there may be positive distance at zj ,

which is not accounted for by the distance in Θi but which needs to be accounted for as

part of the distance in ∆. Thus, in this case, ρ∆(Ki(σ
(j−1), σ(j))) ≤ ρzj (σ

(j−1), σ(j))) +

ρΘi(Ki(σ
(j−1), σ(j))), where we used the fact that the distance at zj remains unchanged

by the update of Θi. Third, when zj /∈ ∆, ρ∆(Ki(σ
(j−1), σ(j))) ≤ ρΘi(Ki(σ

(j−1), σ(j)))

regardless of whether zj ∈ Θi or not because there is no need to count the distance at zj .

Fourth, if zj /∈ Φ(B(∆)) then zj cannot influence the resulting configuration in ∆, i.e.,

ρ∆(Ki(σ
(j−1), σ(j))) = 0 for all i. This is because the only updates that may incur a non-

zero distance at ∆ are of blocks for which Θi ∩ ∆ 6= ∅, but then σ(j−1) and σ(j) agree on

Θi ∪ ∂Θi since zj /∈ Φ(B(∆)) so the distance in Θi remains zero.

Now, by plugging the bounds in (3.8) into the r.h.s. of (3.7), and since ρ∆ =
∑

y∈∆ ρy and ρzj (σ
(j−1), σ(j))) = ρzj (σ, ξ), we get:

ρ∆(FS(Q)) ≤
∑

y∈∆

(
1 − wB(y)

wS
+

I←y

wS

)
ρy(Q) +

∑

y∈Φ(B(∆))\∆

I←y

wS
ρy(Q)

≤
(

1 − miny∈∆
{
wB(y) − I←y

}

wS

)
ρ∆(Q) +

maxy∈Φ(B(∆))\∆ {I←y}
wS

ρΦ(B(∆))\∆(Q)

≤
(

1 − MIN + MAX

wS
+

MAX

wS

)
ρ∆(Q) +

MAX

wS
ρΦ(B(∆))\∆(Q)

=

(
1 − MIN + MAX

wS

)
ρ∆(Q) +

MAX

wS
ρΦ(B(∆))(Q),

where we used the fact that ρ∆ + ρΦ(B(∆))\∆ = ρΦ(B(∆)).
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From here onwards the proof of Theorem 3.9 continues in a very similar manner

to that of the proof of Theorem 3.7, using Lemma 3.10 iteratively to improve the bounds

on average distances in regions.

Proof of Theorem 3.9: For the δ given in the theorem, let

t` =

⌈
wB(Λ`)

miny∈Λ`
wB(y)

ln
1

δ

⌉
.

We will show that for any coupling Q, every 0 ≤ k ≤ `, x ∈ Λ`−k, and t ≥ kt`,

ρΛ`−k
(F t

B(Λ`)
(Q)) ≤ cαk, (3.9)

where c and α are as defined in Theorem 3.9. The theorem follows from (3.9) as explained

next. Take any coupling Q of µη
Λ`+1

and µτ
Λ`+1

. Then, as we already explained in the proof

of Theorem 3.7, for every t, Q′ = F t
B(Λ`)

(Q) is also a coupling of µη
Λ`+1

and µτ
Λ`+1

. Thus, by

setting t = `t` we get a coupling Q′ for which ρΛ0(Q
′) ≤ cα`, as required since Λ0 = Λ.

We go on to prove (3.9). The idea of the proof is that once we have established a

bound for the average total distance in Λ`−k, we can improve on this bound for the average

total distance in Λ`−k−1 by updating a random block.

The formal proof proceeds by induction on k. The base case (k = 0) is clear since

ρΛ`
(Q) ≤ maxσ,ξ ρΛ`

(σ, ξ) ≤ c by definition of c. We assume (3.9) for k and show for k + 1.

We have to show that, for every t ≥ (k + 1)t`, we have ρΛ`−k−1
(F t

B(Λ`)
(Q)) ≤ cαk+1. Since

Φ(B(Λ`−k−1)) = Λ`−k, we can use the induction hypothesis together with Lemma 3.10 to

get that for every t > kt`,

ρΛ`−k−1
(F t

B(Λ`)
(Q)) ≤

(
1 − MAX + MIN

wB(Λ`)

)
ρΛ`−k−1

(F t−1
Λ`

(Q)) +
MAX

wB(Λ`)
cαk,

where MAX = maxy∈Λ`−k
{I←y} and MIN = miny∈Λ`−k

{
wB(y) − I←y

}
. Therefore,

ρΛ`−k−1
(F t

B(Λ`)
(Q)) − MAX

MAX + MIN
cαk ≤

(
1 − MAX + MIN

wB(Λ`)

)[
ρΛ`−k−1

(F t−1
B(Λ`)

(Q)) − MAX

MAX + MIN
cαk

]
.

Notice that miny∈Λ`−k
wB(y) ≤ MAX + MIN ≤ maxy∈Λ`−k

wB(y). In particular, this means

that the factor (1 − MAX+MIN
wB(Λ`)

) ≥ 0. Now, since ρΛ`−k−1
(F kt`

B(Λ`)
(Q)) ≤ ρΛ`−k

(F kt`
B(Λ`)

(Q)) ≤
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cαk by the induction hypothesis, then for all t ≥ kt`,

ρΛ`−k−1
(F t

B(Λ`)
(Q)) ≤ MAX

MAX + MIN
cαk +

(
1 − MAX + MIN

wB(Λ`)

)t−kt`

cαk

≤ MAX

MAX + MIN
cαk +

(
1 − miny∈Λ`−k

wB(y)

wB(Λ`)

)t−kt`

cαk.

In particular, for all t ≥ (k + 1)t`,

ρΛ`−k−1
(F t

B(Λ`)
(Q)) ≤ MAX

MAX + MIN
cαk + δcαk ≤ cαk+1.

This concludes the proof of (3.9) and thus completes the proof of Theorem 3.9.

3.3 Extensions

3.3.1 Extending the model

The conditions in Theorems 3.3 and 3.5 are applicable in more general settings as well.

First, the requirement that κτ
Θi

(the result of updating the block Θi) depends only on the

restriction of τ to Θi∪∂Θi can be relaxed to dependency on sites within a bounded radius r

from Θi. The definition of the sequence {Λ`} is then adapted to this setting by letting

Λ`+1 = β(Λ`) ∪ ∂rβ(Λ`), where ∂rΛ stands for the set of sites outside Λ that are within

distance r from Λ. The rest of the statements and the proofs follow unchanged. Using

update rules that depend on sites within distance r is useful when the models have finite

range interactions rather than just nearest-neighbor interactions, i.e, potentials are defined

for every subset of diameter at most r rather than just single sites and edges, which is the

case r = 1.

A second observation is that we do not need the spin space S to be finite, and can

instead work with a measurable space S equipped with a σ-algebra B of subsets of S. In

this case, the metrics ρx are required to be measurable functions w.r.t. B × B. Up to minor

notational and language issues involving infinite spaces, our proofs carry through to this

setting except that it may no longer be possible to derive an upper bound on the total vari-

ation distance of two distributions when projected onto SΛ from ρΛ(Q) as we did in (3.1).

However, the rest of our discussion leading to (3.1) is still valid. In particular, under our

conditions, for arbitrary τ and σ there exists a coupling of µη
Λ`

and µτ
Λ`

for which ρΛ(Q) is
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exponentially small in `. This means that the Kantorovich-Rubinstein-Ornstein-Vasserstein

(KROV) distance (see, e.g., [DS85a] for a definition) between the two distributions w.r.t. ρΛ

is exponentially small in ` and in particular, that the limits of the two sequences of distribu-

tions as ` → ∞ are the same, i.e., the Gibbs measure is unique.

3.3.2 Implications of the conditions for mixing in time

As was shown in [BD97] and [SZ92], conditions similar to the ones in Theorems 3.3 and 3.5

imply optimal temporal mixing of the dynamics based on the relevant update rule. The main

difference we have to address in order to apply the conditions to the dynamical setting is

that, in the dynamics on a region Ψ, the updated blocks are intersections with Ψ of the

original blocks Θi rather than the Θi themselves. This requires us to modify the definition

of influence of one site on another such that subsets of Θi are considered as well.

To proceed formally, we require here that for every i, the update rule κ is defined

for all subsets Θ of Θi. (Notice that for heat-bath updates this is automatically given, since

the heat-bath rule is defined for every region Θ.) Similarly, the atomic coupling Ki(σ, ξ)

for σ and ξ that differ at a single site should now be defined for any subset Θ of Θi. The

influences of and on a site are now defined w.r.t. the region Ψ in which the dynamics takes

place, and need only be defined for sites in Ψ. Let KΨ
i (σ, ξ) denote the coupled update of

Θi ∩ Ψ. Then, for every x, y ∈ Ψ, IΨ
x←y is defined as the smallest constant for which, for all

pairs of configurations (σ, ξ) such that σ = ξ off y,

∑

i∈B(x)

wiρx(KΨ
i (σ, ξ)) ≤ ρy(σ, ξ)IΨ

x←y,

and IΨ
x← :=

∑
y∈Ψ IΨ

x←y. Similarly, IΨ
←y is the smallest constant for which, for all pairs of

configurations (σ, ξ) such that σ = ξ off y,

∑

i

wiρ(Θi∩Ψ)(K
Ψ
i (σ, ξ)) ≤ ρy(σ, ξ)IΨ

←y.

Recall the notation m for the number of blocks the dynamics chooses from as

discussed in Section 2.3.2. Since in this chapter we allow the blocks to be chosen with

different likelihoods, we generalize the notation for the inverse probability of choosing a
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block to m ≡ d wB(Ψ)

mini∈B(Ψ) wi
e. Let also

D1(Ψ) = max
x∈Ψ,s1,s2∈S

ρx(s1, s2);

D2(Ψ) = max
σ,ξ

ρΨ(σ, ξ);

M(Ψ) = min
x∈Ψ,s1 6=s2

ρx(s1, s2) = min
σΨ 6=ξΨ

ρΨ(σΨ, ξΨ) .

We then have the following two theorems, which are the analogs of Theorems 3.3 and 3.5

respectively.

Theorem 3.11 Let α =
minx∈Ψ{wB(x)−Ix←}

mini∈B(Ψ) wi
. If α > 0 then for every boundary condition η,

every σ ∈ Ωη
Ψ, and any subset Λ ⊆ Ψ,

‖P km(σ, ·) − µη
Ψ‖Λ ≤ D1(Ψ)

M(Λ)
|Λ| exp(−αk),

where P is the dynamics for µη
Ψ based on the update rule κ.

Corollary 3.12 If the collection of metrics with respect to which I←y is defined is bounded and

supΨ maxx∈Ψ
{
Ix← /wB(x)

}
< 1, then the dynamics has optimal projected temporal mixing

uniformly in the boundary condition.

Theorem 3.13 Let α =
miny∈Ψ{wB(y)−I←y}

mini∈B(Ψ) wi
. If α > 0 then for every boundary condition η,

every σ ∈ Ωη
Ψ, and any subset Λ ⊆ Ψ,

‖P km(σ, ·) − µη
Ψ‖Λ ≤ D2(Ψ)

M(Λ)
exp(−αk),

where P is the dynamics for µη
Ψ based on the update rule κ.

Corollary 3.14 If the collection of metrics with respect to which I←y is defined is summable

and supΨ maxy∈Ψ
{
I←y /wB(y)

}
< 1, then the dynamics has optimal projected temporal mix-

ing uniformly in the boundary condition.

Remarks:

• Notice that in order to get optimal temporal mixing from Theorems 3.11 and 3.13 respectively,

it is enough that
D1(Ψ)
M(Ψ) and

D2(Ψ)
M(Ψ) respectively are polynomial in n = |Ψ|. Furthermore,

cgap ≥ α regardless of D1, D2 and M . (For an explanation of the last fact see the end of

Section 2.3.2.)
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• Although it is tempting to assert that the influence of y on x through a subset Θ ⊆ Θi cannot

be larger than the influence through Θi, this is not the case since the fact that x may be

adjacent to the boundary of Θ while being “far” from the boundary of Θi may yield a larger

influence through Θ (even though y is “far away” in both cases). See [Mar98] for more on this

phenomenon of a so-called “boundary phase transition”. Nevertheless, it is often the case that

bounds given on the influence through Θi apply to the influence through any subset Θ of Θi.

Indeed, in all the applications we give in Section 3.4, we establish not only the conditions

for uniqueness given in Theorems 3.3 and 3.5, but in fact the stronger conditions given in

Corollaries 3.12 and 3.14.

• Notice that in the infinite volume (continuous time) dynamics that was mentioned in Sec-

tion 2.3.2 the updates are always of Θi in full, and hence it is enough that either of the

original conditions in Theorems 3.3 and 3.5 holds in order to get optimal projected temporal

mixing of this dynamics.

• In Chapter 4 we show that optimal projected temporal mixing of a dynamics based on bounded-

diameter blocks and uniform block weights implies strong spatial mixing. Thus, if either of

the conditions in Corollaries 3.12 and 3.14 holds w.r.t. an update rule based on a collection of

uniformly weighted bounded-diameter blocks then strong spatial mixing holds. (This can also

be proven directly based on arguments similar to those given in the proofs of Theorems 3.3

and 3.5.)

• The fact that stronger conditions such as these indicated here imply optimal temporal mixing

and strong spatial mixing was already proved for systems on Z
d in [DS85b] and [SZ92].

• The converse for systems on Z
d is also known [DS85b, SZ92]. In particular, if strong spatial

mixing holds then the conditions in Corollaries 3.12 and 3.14 hold w.r.t. the heat-bath update

of large enough regular boxes. We give another (simple) proof of this fact in Section 4.4.2,

where we show that strong spatial mixing implies optimal temporal mixing of the heat-bath

dynamics that updates translations of a sufficiently large regular box.

Proof of Theorem 3.11: The proof is based on Lemma 3.8 in a similar way to the proof

of Theorem 3.3, i.e., by giving an upper bound on the distance at any site when running

a coupled process. For an initial coupling Q, let FB(Ψ)(Q) denote the result of a coupled

update of a random block from B(Ψ) as before, but where the update is of Θi ∩ Ψ rather

than Θi. Let Q be any coupling of P 0(σ, ·) and µη
Ψ. (Notice that the first distribution is

simply σ, and that the two configurations in the coupling agree outside Ψ with certainty.)

Let δt = maxx F t
B(Ψ)(Q). Then Lemma 3.8 yields δt+1 ≤ (1 − α

m)δt. Since δ0 ≤ D1(Ψ)

by definition of D1, we have δt ≤ D1 exp(−α t
m ). Hence, the probability that the two
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coupled configurations on Λ differ after km steps is at most δkm
M(Λ) |Λ| ≤

D1(Ψ)
M(Λ) |Λ| exp(−αk),

as required.

Proof of Theorem 3.13: This theorem is in fact a special case of the general path-coupling

argument given in [BD97]. For completeness, we illustrate a proof based on Lemma 3.10

by giving an upper bound on the total distance when running a coupled process. Let Q be

any coupling of P 0(σ, ·) and µη
Ψ. Since the two coupled configurations agree with certainty

outside Ψ, Lemma 3.10 gives ρΨ(FB(Ψ)(Q)) ≤ (1 − α
m )ρΨ(Q). Since ρΨ(Q) ≤ D2(Ψ) by

definition, we get that ρΛ(F t
B(Ψ)(Q)) ≤ ρΨ(F t

B(Ψ)(Q)) ≤ D2(Ψ)(1 − α
m)t. We conclude

that the probability of disagreement in Λ under the coupling after km steps is at most
ρΛ(F km

B(Ψ)
(Q))

M(Λ) ≤ D2(Ψ)
M(Λ) exp(−αk), as required.

3.4 Applications

In this section we illustrate the use of the conditions given in Theorems 3.3 and 3.5 by

carrying out the appropriate calculations for a few specific models in specific ranges of their

parameters, thus showing uniqueness of the Gibbs measure for these models in the appro-

priate ranges. Although we do not extend the previously known range of parameters for

which the Gibbs measure is unique, we do extend the range for which finite size conditions

of the Dobrushin type hold. In addition, the examples given here shed additional light on

our two conditions and the differences between them, and might also serve as guiding ex-

amples for readers seeking to establish uniqueness of the Gibbs measure for other models

by applying Theorem 3.3 or Theorem 3.5.

The following notation is used in all our examples. Recall that one of the ingredi-

ents that needs to be specified in our conditions is a collection of metrics ρ. All the examples

we mention in this section use a collection of metrics of the form ρx = uxρδ, where ux ∈ R
+

is a weight associated with site x, and ρδ is the metric that assigns 1 to any pair of distinct

spins and 0 to a pair of identical spins. In particular, for a coupling Q, ρx(Q) is exactly ux

times the probability (under Q) that the two coupled spins at x differ. From here onwards

a collection of metrics will be specified by determining the set of weights ux, and implicitly

setting ρx = uxρδ.
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3.4.1 Colorings of biregular bipartite graphs

We start with an example that emphasizes the differences between the two conditions.

These differences are better clarified when the matrix of influences is not symmetric, i.e.,

the influence of site y on site x is not the same as that of x on y. An example of a model

where this symmetry is broken is the model of colorings (as in Example 2.4) on a tree with

alternating branching degrees, i.e., the underlying graph is the infinite rooted tree in which

vertices at even distance from the root have b1 children, vertices at odd distance from the

root have b2 children, and b1 6= b2. The parameters of the model are thus q (the number

of colors) and (b1, b2). We apply our conditions to establish that, for q > b1 + b2 + 2, the

Gibbs measure is unique. We give two proofs, one using Theorem 3.3 and the other using

Theorem 3.5. We note that uniqueness for colorings on a tree is known to hold for a wider

range of parameters. For example, when b1 = b2 (the tree is regular of degree b1 + 1),

the Gibbs measure is unique if and only if q > b1 + 1 [Jon02]. However, the range of

parameters for which we show uniqueness here is still larger than that given by the original

Dobrushin condition, which is q > 2(max {b1, b2} + 1). (The calculation using the original

Dobrushin condition was first done in [SS97], and implies uniqueness for q > 2(b + 1) on

any underlying graph of maximum degree b + 1.

In order to use our theorems we need to specify a coupled update rule for the

model. For this example, we use the simple update rule in which each block is a distinct

single site, the weights of the blocks are uniform (e.g., all 1) 2, and where updates are done

according to the heat-bath rule. We identify a block Θi with the site x it consists of and

write κτ
x in place of κτ

i . Notice that for the colorings model, a heat-bath update means that

under κτ
x, the color at x is chosen uniformly at random from the set of colors not assigned

to neighbors of x under τ . Notice also that for q > max {b1, b2} + 1 (i.e., when the number

of colors is larger than the maximum degree of the graph — as is the case for the range of q

we consider), κτ
x as above is well defined even if τ is infeasible, as required.

In order to complete the specification of our coupled update rule we have to specify

how to couple two updates starting from two configurations that disagree at exactly one

2When each block is a single site (or more generally, when each site is included in exactly one block),

allowing general sets of weights {wi} does not add any generality to our conditions, i.e., for any coupled

update rule using a collection of blocks of the above type, the satisfiability of the conditions in Theorems 3.3

and 3.5 is unaffected when changing the set of weights to be uniformly 1. This is because, when each site is

covered by exactly one block, the quantity Ix← / wB(x) in Theorem 3.3 is independent of the choice of weights,

and the condition in Theorem 3.5 is not affected if we absorb the weights wi into the collection of metrics ρ.
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site, i.e., we need to specify Kx(σ, ξ) for pairs σ and ξ that differ at exactly one site y. We

need only specify this coupling when y is a neighbor of x or y = x because otherwise the

coupling is required to be the one in which the spins at x agree with probability 1. We set

Kx(σ, ξ) to be a coupling that minimizes the probability of disagreement between the spins

at x. When y = x this simply means the coupling in which the two resulting configurations

agree with certainty (since we use a heat-bath update, κσ
x = κξ

x when σ and ξ differ only

at x). When y is a neighbor of x, and when the number of colors available for the update of

the spin at x under σ is the same as under ξ, the optimal coupling is described as follows.

Suppose that under both configurations the number of available colors at x is a, and w.l.o.g.

that σy = 1 and ξy = 2. Then, Kx(σ, ξ) assigns probability 1/a to the pair of configurations

in which x is colored 2 and 1 respectively, and for each of the other a− 1 available colors s,

Kx(σ, ξ) assigns probability 1/a to the pair of configurations in which both spins at x are

colored s. Thus, the probability of disagreement is 1/a. The coupling Kx(σ, ξ) takes a

similar form when the number of available colors at x under σ is not the same as under ξ

(this number may differ by one) so that in either case, the probability of disagreement at x

is 1/a, where a is the number of available colors at x under the configuration for which this

number is smaller. In particular, the probability of disagreement is at most 1/(q − deg(x))

(with equality for at least one pair σ, ξ). (For details of the calculation when the number of

available colors differs, see Section 5.3.4.)

The final ingredient we need to specify is the collection of metrics ρ. Since we use

a collection of the form ρx = uxρδ, we only need to specify the weights ux. Although we use

non-uniform weights in order to show uniqueness for the range of parameters mentioned

before, it is instructive to first consider the case in which the ux are uniformly set to 1,

which is the setting in the original Dobrushin condition. Under this setting, Ix←y = 1/(q −
deg(x)) since ρx(Kx(σ, ξ)) is simply the probability of disagreement at x under the coupling

Kx(σ, ξ). Thus, supx Ix← = supx
deg(x)

q−deg(x) = max
{

b1+1
q−b1−1 , b2+1

q−b2−1

}
. Recall that for the

collection of blocks we use, wB(x) = 1 for every x since each site is covered by exactly one

block whose weight is 1. Thus, using Theorem 3.3 (or equivalently, the original Dobrushin

condition) we get that the Gibbs measure is unique in the range of parameters that satisfy

max
{

b1+1
q−b1−1 , b2+1

q−b2−1

}
< 1, i.e., for q > 2(max {b1, b2} + 1).

We pause to observe that the colorings model with the above choices of update rule

and collection of metrics is a good example of the fact that influence on and of a site may

differ. First, since neighboring sites have different degrees, Ix←y 6= Iy←x. Furthermore, for a
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site y with b1 children, the total influence of y is I←y = b1+1
q−b2−1 . (This is because y has b1 +1

neighbors, and the influence of y on each is 1 / (q−b2−1) because the degree of each neigh-

bor is b2 + 1.) Thus, the maximum total influence is supy I←y = max
{

b1+1
q−b2−1 , b2+1

q−b1−1

}
,

which is less than the maximum total influence on a site when b1 6= b2. Notice also that we

cannot use the above uniform collection of metrics in order to show uniqueness using the

condition based on total influence of a site (Theorem 3.5) because this condition requires

that the collection of metrics be bounded, and a uniform collection is clearly not bounded.

We now go on to establish uniqueness of the Gibbs measure for q > b1 + b2 + 2,

improving on the range of parameters for which uniqueness is obtained using the original

Dobrushin condition. We give two proofs of this fact, using Theorems 3.3 and 3.5 respec-

tively. For each proof we use a different set of weights ux. We start with the condition

based on the total influence on a site (Theorem 3.3). As is apparent from the analysis of

the setting in which ux is uniform, there is room for improvement since the total influence

on sites of the larger degree is larger than on those of the smaller degree. We give the

two types of sites different weights in order to balance the total influence they get. Let

ux =
√

q−deg(x)
deg(x) . This yields Ix←y = ux

uy(q−deg(x)) =
√

deg(y)
(q−deg(y))(q−deg(x))deg(x) , and therefore,

Ix← =
√

(b1+1)(b2+1)
(q−b1−1)(q−b2−1) for every x. Thus, using Theorem 3.3, the Gibbs measure is unique

in the range of parameters for which the last expression is < 1, i.e., for q > b1 + b2 + 2.

We now give the second proof of uniqueness for the above range of parameters,

this time using the condition based on the total influence of a site (Theorem 3.5). In order

to use this condition, we have to set the weights ux so that they yield a summable collection

of metrics, i.e.,
∑

x ux has to be finite. In addition, we optimize the weights to minimize

the maximum total influence of a site, i.e., we balance the total influence of different sites.

In the resulting choice of weights, ux depends on (and is determined by) the distance of x

from the root of the tree. We thus write u` for the weight of a site at distance ` from the

root. Set u2` = [(1 + ε)b1b2]
−`
√

q−b1−1
b1+1 and u2`+1 = 1

b1
[(1 + ε)b1b2]

−`
√

q−b2−1
b2+1 , where ε > 0

is a small enough constant to be determined later. Clearly,
∑

x ux is finite because the total

weight at level ` is proportional to (1 + ε)−b`/2c. We go on to calculate the influence of a

site under this choice of weights. Consider a site y at distance 2` from the root. This site

influences its parent as well as its b1 children. The probability of disagreement under the

relevant coupling is 1/(q− b2 − 1) for both the parent and the children, but observe that the
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weight of the parent differs from that of the children. Specifically,

I←y =
u2`−1

u2`(q − b2 − 1)
+ b1

u2`+1

u2`(q − b2 − 1)

=
(1 + ε)b2 + 1

q − b2 − 1

√
(b1 + 1)(q − b2 − 1)

(q − b1 − 1)(b2 + 1)
≤ (1 + ε)

√
(b1 + 1)(b2 + 1)

(q − b1 − 1)(q − b2 − 1)
.

For y at distance 2` + 1 from the root, a similar calculation gives the slightly better bound

I←y ≤
√

(b1+1)(b2+1)
(q−b1−1)(q−b2−1) . Applying Theorem 3.5, we conclude that the Gibbs measure is

unique in the range of parameters for which (1 + ε)
√

(b1+1)(b2+1)
(q−b1−1)(q−b2−1) < 1 for some ε > 0,

i.e., for q > b1 + b2 + 2.

We conclude this subsection by observing that the result obtained here (uniqueness

for q > b1+b2+2) holds for any (b1+1, b2+1)-biregular bipartite graph, i.e., for any bipartite

graph on vertex set V1∪V2 in which vertices in V1, V2 have degrees b1, b2 respectively. Indeed,

if we examine the first of the two proofs we gave for the tree (the one using total influence

on a site), we see that the only structure of the graph that we used is that for any site, either

its degree is b1 +1 and all its neighbors are of degree b2 +1, or its degree is b2 +1 and all its

neighbors are of degree b1+1. This property holds for any bipartite graph of the above type.

We are unaware of any literature discussing colorings of biregular bipartite graphs, and we

believe the above bound to be the best known for general graphs of this type (specifically,

for those that are not trees). The only previously known bound available for graphs of this

type is the one obtained from the original Dobrushin condition (which holds for any graph).

As mentioned before, this bound is q > 2 supx deg(x) = 2(max {b1, b2} + 1), and our bound

improves on this for b1 6= b2.

3.4.2 Ising model on a regular tree

The next model we discuss is the Ising model (as defined in Example 2.1) on the infinite

b-ary tree (in which every vertex except the root has degree b + 1). Recall that in this

model the parameters are the inverse temperature β, the external field h, and the branching

degree of the tree b. In this model, the range of parameters for which the Gibbs measure

is unique is known exactly [Pre74, Geo88]. Specifically, there exists a critical temperature

β0(b) = 1
2 ln( b+1

b−1 ) such that for β ≤ β0 the Gibbs measure is unique for all external fields h.

For β > β0, there exists a known critical value hc(β, b) > 0 such that the Gibbs measure

is unique if |h| > hc, and there are multiple Gibbs measures if |h| ≤ hc. (The phase
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diagram of the Ising model on regular trees is discussed in further detail in Section 5.1.2,

and illustrated in Figure 5.1.) We will show that both our conditions hold throughout the

supercritical regime (i.e., for β > β0 and arbitrary h, or β ≤ β0 and |h| > hc), an evidence of

the tightness of our conditions. We compare this with the range of parameters for which the

original Dobrushin condition holds, which is β > 1
2 ln( b+2

b ) and arbitrary h. The update rule

we use in our proofs is a heat-bath update of a finite subtree. This illustrates another new

feature of our conditions, i.e., allowing updates of finite subsets on any graph. As part of

our discussion, we also show that the respective restrictions on the collections of metrics in

Theorems 3.3 and 3.5 are both necessary. This is done by giving a coupled update rule and

collections of metrics that satisfy the conditions in these theorems except for the respective

restrictions on the collection of metrics, for some β > βc and h = 0, i.e., in the regime

where there are multiple Gibbs measures.

Single-site updates

We start by considering the heat-bath update rule on single sites and the uniform collection

of metrics (where ux = 1 for all x), which is the setting in the original Dobrushin condition.

Recall that a heat-bath update simply means that κτ
x = µτ

x. For σ and ξ that differ at a single

site y, we set Kx(σ, ξ) as the optimal coupling of µσ
x and µξ

x, i.e., ρx(Kx(σ, ξ)) = ‖µσ
x −µξ

x‖x.

Notice that if y = x then Kx(σ, ξ) = 0 because then µσ
x and µξ

x are the same. If y is a

neighbor of x, it is well known (e.g., [KMP01]; see also Section 5.3.1) that ‖µσ
x − µξ

x‖x ≤
eβ−e−β

eβ+e−β ≡ γ (with equality if the spins of the neighbors of x other than y are divided equally

between pluses and minuses). Thus, Ix←y ≤ γ (with equality if the degree of x is odd), and

the total influence on any site x is Ix← ≤ (b + 1)γ. Using Theorem 3.3 (or, equivalently,

the original Dobrushin condition), this immediately establishes uniqueness of the Gibbs

measure for β such that (b + 1)γ < 1, i.e., for β < 1
2 ln( b+2

b ), and arbitrary h. For the same

range of parameters, it is also easy to see that the dual condition in Theorem 3.5 holds

for the same coupled update rule, but setting ux = [(1 + ε)b]−|x|, where |x| stands for the

distance of x from the root of the tree and ε is a small enough constant (this is needed in

order for the collection of metrics to be summable).

We now use the simple coupled update rule described above in order to show

that the restrictions imposed on the collection of metrics used in Theorems 3.3 and 3.5

respectively are necessary. We start with Theorem 3.3. Consider the collection of metrics
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resulting from setting ux = (
√

b)|x|. This is clearly not a bounded collection because ux

grows to infinity with the distance of x from the root of the tree. Since now the weight

of a site is
√

b times the weight of its parent, it is easy to see that for every x, Ix← ≤
[b · 1√

b
+1 ·

√
b]γ = 2

√
bγ. Thus, for this choice of weights, supx Ix← < 1 for β < 1

2 ln(2
√

b+1
2
√

b−1
).

However, since 1
2 ln(2

√
b+1

2
√

b−1
) > 1

2 ln( b+1
b−1 ) for b > 4, for this choice of weights the range of

parameters for which the condition holds includes values for which the Gibbs measure is not

unique. We thus conclude that the requirement that the collection of metrics be bounded is

necessary for Theorem 3.3 to hold.

We go on to consider Theorem 3.5, and show that the requirement that the col-

lection of metrics be summable is necessary for this Theorem to hold. Consider the same

coupled update rule as above, but set the weights ux = (
√

b)−|x|. Although this collection is

bounded, it is not summable because the total weight of sites at distance ` from the root is

(
√

b)`, which goes to infinity with `. A calculation similar to that in the previous paragraph

gives that supy I←y < 2
√

bγ. Hence, as before, for this choice of weights supy I←y < 1 for

some values of β for which the Gibbs measure is not unique. We thus conclude that the

requirement that the collection of metrics is summable is necessary in Theorem 3.5.

A slight modification of the last example shows that the requirement that supy wB(y)

is finite is also necessary in Theorem 3.5. Recall that so far, we only used collections of

blocks in which the weights were uniformly set to 1. In fact, in the rest of the applications

in this paper we continue to only use collections of this type, except here, where we wish to

demonstrate the necessity of the restriction that supy wB(y) is finite. Thus, consider the cou-

pled update rule from the last two paragraphs, with metric weights ux = [(1+ε)b]−|x| (so the

collection of metrics is summable), except that now the weight of a block wx = [(1+ε)
√

b]|x|.

Since each site y is included in the unique block Θy = {y}, B(y) consists of only this block

and wB(y) = wy. Thus, the above choice of block weights violates the requirement that

supy wB(y) is finite because wy grows to infinity with |y|. In addition, it is easy to see that

the quantity supy

{
I←y /wB(y)

}
remains exactly the same as in the example of the previ-

ous paragraph because the product wxux is unchanged for all x, and since the coupled

update rule is the same (up to the change of weights). We thus conclude as in the previous

paragraph that the requirement that supy wB(y) is finite is necessary in Theorem 3.5.
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Sharp uniqueness bounds using larger blocks

We now go on to show that both our conditions hold throughout the supercritical regime of

parameters by considering updates of finite sub-trees.

Theorem 3.15 In the Ising model on the regular b-ary tree, for the following regimes of pa-

rameters there exist a coupled update rule and a collection of metrics that satisfy the condition

in Theorem 3.3:

(i) β < β0 and arbitrary h;

(ii) β ≥ β0 and |h| > hc(β).

Furthermore, for the same regimes of parameters, there exists a collection of metrics that to-

gether with the above coupled update rule satisfies the condition in Theorem 3.5.

Proof: We will only give the proof for regime (i). The proof for regime (ii) goes by a

similar but slightly more involved argument, which we sketch at the end. The coupled

update rule we use is based on a heat-bath update of a finite size complete subtree. Thus,

the collection of blocks is constructed as follows. For every site z, let Θz be the complete

subtree of height ` − 1 rooted at z, where ` is a (large enough) constant to be determined

later. Notice that Θz consists of ` levels (including the level of z itself). The collection

of blocks includes Θz for every z, plus the ` − 1 blocks which are the complete subtrees

of height 0, 1, . . . , ` − 2 respectively, rooted at the root of the original infinite tree (for

convenience, we think of these extra blocks as subtrees rooted at imaginary ancestors of

the root of the original tree). The addition of the extra blocks guarantees that every site is

covered by exactly ` blocks. As usual, the weight of every block is set to 1.

As before, we write κσ
z for the distribution resulting from an update of Θz. Since

we use a heat-bath update, κσ
z = µσ

Θz
. We need to specify the coupling Kz(σ, ξ), where σ and

ξ differ at exactly one site y ∈ Θz ∪ ∂Θz. If y ∈ Θz then Kz(σ, ξ) is defined as the coupling

in which the two configurations agree with certainty. For y ∈ ∂Θz we use the optimal

coupling as constructed in [KMP01], and which is described in detail in Section 5.2.4 (proof

of Claim 5.5). In particular, this coupling is constructed recursively along paths of the tree,

such that for every x ∈ Θz, the probability of disagreement at x under Kz(σ, ξ) is ≤ γ|x−y|,

where |x − y| stands for the graph distance between x and y.
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Consider now the uniform collection of metrics where ux = 1 for every x. We

note that for this choice of weights, if x ∈ Θz then ρx(Kz(σ, ξ)) ≤ γ|x−y|, for σ and ξ that

disagree only at y ∈ ∂Θz. We go on to calculate the influence a site y has on site x. First,

observe that if |y − x| > ` then Ix←y = 0. If |y − x| ≤ ` (and y 6= x) then there is exactly

one block Θz through which y influences x. This is because y is on the boundary of exactly

b+1 blocks, namely the b blocks rooted at each of the children of y, and the block rooted at

the ancestor ` levels above y. Thus, if x is an ancestor of y, then y influences x through Θz

if and only if z is the ancestor ` levels above y. If x is a descendent of y, then y influences x

through Θz if and only if z is the child of y that is the ancestor of x (and z = x if x is an

immediate child of y). We conclude that Ix←y ≤ γ|x−y|. Thus, for every x,

Ix← =
∑

y

Ix←y ≤ b + 1

b

∑̀

j=1

(bγ)j .

Now, since each site is included in exactly ` blocks then wB(x) = ` for every x.

Thus, the above coupled update rule satisfies the condition in Theorem 3.3 if Ix← < `

for every x. However, for β < 1
2 ln( b+1

b−1 ), γ ≡ eβ−e−β

eβ+e−β < 1
b . Thus, for this range of β,

Ix← is bounded by a constant independent of `, and hence Ix← < ` for a large enough `

(depending on β), as required.

We go on to show that for the same range of parameters of the Ising model, there

exists a collection of metrics which together with the above coupled update rule satisfies

the condition in Theorem 3.5. Here we need to have a summable collection of metrics,

and for this purpose we set ux = [(1 + ε)b]−|x|, where ε > 0 is a small enough constant

(which may depend on (β, b) but not on `) to be set later. Let us calculate I←y for this

collection of metrics. As before, it is enough to show that I←y is bounded by a constant

independent of `. First, notice that for the above choice of weights, the total weight of

the sites below y is at most a constant times uy, so the contribution to I←y of the blocks

immediately below y is bounded by a constant even if the spins of all sites included in these

blocks disagree with certainty. We still need to consider the block above y. Let z be the

ancestor ` levels above y. We need to show that ρΘz(Kz(σ, ξ)) is bounded by uy times a

constant independent of `, for every σ and ξ that differ only at y. Since the coupling we use

was constructed recursively (see Section 5.2.4), a disagreement at a site x ∈ Θz can occur

only if all the sites on the path from y to x have disagreeing spins. Combining this with the

fact that for every site x, the total weight of sites below x is at most a constant times ux,
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we see that ρΘz(Kz(σ, ξ)) is bounded by a constant times the average total distance along

the path from y to z. It is therefore enough to show that the average total distance along

this path is at most a constant (independent of `) times uy. Notice that the weight of

an ancestor j levels above y is uy[(1 + ε)b]j , but that the probability of disagreement at

that site under Kz(σ, ξ) is at most γj . Thus, the above distance along the path is at most

uy
∑`

j=1[(1+ ε)bγ]j , which is bounded by a constant times uy if β < 1
2 ln( b+1

b−1 ) and ε is small

enough (such that (1 + ε)γ = (1 + ε) eβ−e−β

eβ+e−β < 1
b ), as required.

We conclude with a few comments about the proof for regime (ii). Notice that in

the proof for regime (i) (for both conditions) the crucial properties we used were that for σ

and ξ that differ only at y, the probability of disagreement at x ∈ Θz under Kz(σ, ξ)) is at

most γ|x−y|, and that γ < 1
b for β as in regime (i). In regime (ii), the latter bound no longer

holds. However, as we show in Section 5.3.1, for the supercritical values of the parameters

as in regime (ii), there exist constants c and γ̂ < 1
b such that the above probability of

disagreement is at most cγ̂ |x−y|.

Remark: The fact that our conditions hold throughout the uniqueness regime (except at the

critical point) is not specific to the Ising model and holds for a number of other models on the

regular b-ary tree. In particular, the heat-bath update of complete subtrees of height ` − 1 for large

enough ` satisfies our conditions throughout the super-critical regime of a number of other models

on a regular tree. These include the hard-core model, the colorings model and the ferromagnetic

Potts model. This follows from the fact that the quantity γ̂ < 1
b

in these settings. See Section 5.3 for

an exact definition of this quantity and the calculation of it in the above settings.

3.4.3 Independent sets of graphs of subexponential growth

In this subsection we discuss an update rule for the hard-core (independent sets) model

(defined in Example 2.2) that was presented and analyzed in [DG00] in the dynamical

context, where it was shown to have optimal temporal mixing uniformly in the boundary

condition λ < 2
b−1 , where b + 1 is the maximum degree of the underlying graph. We put

this analysis in the context of our conditions, showing that they are satisfied by the above

update rule for the same range of parameters if the underlying graph is of subexponential

growth. The fact that the Gibbs measure is unique for this range of parameters on graphs

of subexponential growth is not new because there is an independent argument (which we

discuss in Chapter 4) that states that if a model on a graph of subexponential growth admits
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a dynamics that uses bounded diameter blocks (as does the one in [DG00]) and has optimal

temporal mixing uniformly in the boundary condition, then strong spatial mixing holds and

the Gibbs measure is unique. Our motivation for discussing this update rule is twofold.

First, it is an example of an interesting update rule that is more sophisticated than heat-

bath. Second, it illustrates how an analysis that was carried out in the dynamical context

in order to establish optimal temporal mixing can also be used in order to show that our

conditions hold w.r.t. the same update rule and choice of parameters (but only for graphs

of subexponential growth).

Before going on to our analysis, we mention some other known bounds for the

hard-core model. For general graphs, the best known bound is that achieved by the original

Dobrushin condition, which establishes uniqueness for λ < 1
b . For the special case in which

the underlying graph is the square integer lattice Z
2 (which is, of course, of subexponential

growth), the best known bound [KRS89] is that the Gibbs measure is unique for λ < 1.185.

The proof in [KRS89] is computer-assisted and uses the Dobrushin-Shlosman condition,

i.e., a special case of Theorem 3.5 above, where updates are heat-bath of L × L squares

for some L. When the underlying graph is a regular tree (obviously not of subexponential

growth), the uniqueness regime is completely known. Specifically, on a regular tree, the

Gibbs measure is unique if and only if λ ≤ bb

(b−1)b+1 .

We start our analysis with a general discussion of how to convert an analysis of the

type carried out in [DG00] to our setting. The analysis in [DG00] is based on path coupling,

where a coupling of an update is given for every pair of current configurations that differ

at exactly one site, and it is shown that the average Hamming distance between the two

resulting configurations is strictly less than 1, i.e., the distance decreases. Translating to our

notation, using Hamming distance is equivalent to setting ux = 1 for every x, and the fact

that the distance decreases in every step is equivalent to I←y − wB(y) < 0 for every site y,

or equivalently, I←y /wB(y) < 1. Thus, this coupled update rule satisfies the condition in

Theorem 3.5, except that the (uniform) collection of metrics is not summable. However, as

we already explained in the remark following Theorem 3.5, if the update rule uses blocks

of bounded diameter and if the underlying graph is of sub-exponential growth, then the

uniform metric can be modified to be summable while still maintaining I←y /wB(y) < 1 for

every site y. (Recall that a graph is said to be of subexponential growth if the volume of

balls in the graph grows subexponentially with their radius, or equivalently, if there exists a
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vertex x0 such that for every ε > 0,
∑

y(1 + ε)−|x0−y| is finite, where |x0 − y| stands for the

graph distance between x0 and y.)

From here onwards we repeat the description and analysis w.r.t. the uniform col-

lection of metrics of the update rule given in [DG00], but we do it using our terminology.

Recall that in the hard-core model a configuration specifies a subset of occupied sites. It is

therefore useful to write σ ∪ {x} for the configuration in which the subset of occupied sites

is as in σ, except that x is also occupied. Similarly, σ \ {x} stands for the configuration in

which x is not occupied. The collection of blocks we use for the update rule is as follows:

there is a block Θz for every site z, and Θz consists of z and all neighbors of z. As usual, the

weight of each block is set to 1. As before, since blocks are indexed by sites, we write κσ
z

for the distribution of an update of Θz in current configuration σ. The result of an update

of Θz depends on the current configuration on the neighbors of z. Specifically, κσ
z is defined

as the distribution resulting from the following update of Θz:

• If all the neighbors of z are unoccupied under σ: with probability λ
1+λ the resulting

configuration is σ∪{z}, and with probability 1
1+λ the resulting configuration is σ\{z}.

• If at least two of the neighbors of z are occupied under σ: the resulting configuration

is deterministically set to σ \ {z}.

• If exactly one neighbor of z is occupied under σ, say this is x: with probability λ
4(1+λ)

the resulting configuration is (σ \ {x}) ∪ {z}, and with probability 1 − λ
4(1+λ) , the

resulting configuration is σ \ {z}.

Notice that κσ
z is defined for all σ, not just feasible ones. (In [DG00], the update was defined

only for feasible current configurations σ3.) It is easy to verify that µτ
Θz

is stationary w.r.t.

κz for every feasible τ (since κz is reversible w.r.t. µτ
Θz

for every feasible τ).

From the definition above it is easy to see that κσ
z depends neither on the spin

of z itself nor on the configuration on ∂Θz, i.e., it depends only on the configuration of the

neighbors of z. With that in mind, we go on to define the coupling Kz(σ, ξ) for pairs (σ, ξ)

the differ only at y, where y ∈ Θz ∪ ∂Θz. Since κσ
z does not depend on σz or on σ∂Θz , in

case y = z or y ∈ ∂Θz we define Kz(σ, ξ) as the coupling in which the two configurations

3Strictly speaking, for the hard-core model, it is possible to slightly modify our construction of the path

coupling in Section 3.2.2 so that it would be enough to define the update rule (and the couplings Kz) only for

feasible configurations. Nevertheless, we define the update rule for any current configuration σ so that we can

use the general form of our theorems.
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agree on Θz with probability 1. When y ∈ Θz and y 6= z, i.e., y is a neighbor of z, Kz(σ, ξ)

is defined as follows. Recall that σ and ξ agree on all sites other than y and assume w.l.o.g.

that y is occupied under σ and unoccupied under ξ. Kz(σ, ξ) is then defined according to

the number of neighbors of z other than y that are occupied:

• If two or more of the neighbors of z other than y are occupied then both κσ
z and κξ

z

are deterministic, so there is a unique coupling of these two distributions. This is

the coupling in which, with probability one, the resulting pair of configurations is

(σ \ {z} , ξ \ {z}). Notice that in this case ρΘz(Kz(σ, ξ)) = 1.

• If exactly one neighbor other than y is occupied (say, x is the occupied neighbor) then

κσ
z is still deterministic so there is a unique coupling of κσ

z and κξ
z, the one in which

with probability 1− λ
4(1+λ) the resulting pair of configurations is (σ \{z} , ξ \{z}), and

with probability λ
4(1+λ) the resulting pair is (σ \ {z} , (ξ \ {x}) ∪ {z}). Notice that in

this case ρΘz(Kz(σ, ξ)) = 1 − λ
4(1+λ) + 3 λ

4(1+λ) = 1 + λ
2(1+λ) .

• If all neighbors of z other than y are unoccupied then Kz(σ, ξ) is the following cou-

pling. With probability 1
1+λ the resulting pair is (σ \ {z} , ξ \ {z}), with probability

3λ
4(1+λ) the resulting pair is (σ \ {z} , ξ ∪ {z}), and with probability λ

4(1+λ) the resulting

pair is ((σ \ {y}) ∪ {z} , ξ ∪ {z}). Notice that (σ \ {y}) ∪ {z} = ξ ∪ {z} and hence

ρΘz(Kz(σ, ξ)) = 1
1+λ + 2 3λ

4(1+λ) = 1 + λ
2(1+λ) in this case.

We conclude that ρΘz(Kz(σ, ξ)) ≤ 1 + λ
2(1+λ) if y is a neighbor of z, and ρΘz(Kz(σ, ξ)) = 0

otherwise. In particular, I←y = deg(y)(1 + λ
2(1+λ) ).

Now, since y is included in deg(y) + 1 blocks (which are Θy, and Θz for every

neighbor z of y), wB(y) = deg(y) + 1. Thus, I←y /wB(y) = deg(y)(1 + λ
2(1+λ) )/(deg(y) +

1), and supy I←y /wB(y) < 1 if
deg(y)λ
2(1+λ) < 1 for every y, i.e., if λ < 2

b−1 . Hence, using

Theorem 3.5 and the explanation at the beginning of this subsection, the hard-core model

with activity parameter λ on graphs of subexponential growth of maximum degree b + 1

admits a unique Gibbs measure for λ < 2
b−1 .

Remark: Notice that for the update rule described in this subsection, I←y <
∑

x Ix←y. In other

words, it was crucial for our analysis that in the definition of I←y, the quantification over config-

urations is taken only once before summing over x, rather than quantifying separately for each x.

To see this, recall our analysis of the distance ρΘz
(Kz(σ, ξ)), and notice that for every pair of con-

figurations (σ, ξ), there can be at most one site x other than z and y for which ρx(Kz(σ, ξ)) > 0
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(specifically, this can only happen if x is the unique neighbor of z other than y that is occupied).

However, when calculating
∑

x Ix←y we need to consider the worst pair of configurations for each x

separately, and hence the coupling Kz contributes to the distance at all neighbors x of z. The last

observation follows from the fact that for each x, we have to consider the pair of configurations in

which x is the unique occupied neighbor of z other than y. When one considers the total influence

on a site w.r.t. the above update rule, a similar issue arises. In particular, Iy← =
∑

x Iy←x > I←y ,

so we cannot use the same update rule in order to establish uniqueness of the Gibbs measure using

Theorem 3.3 (which would apply to any underlying graph) for the same range of parameters. In

fact, w.r.t. the above update rule, the condition based on the total influence on a site holds for an

even smaller range of parameter values then the single-site Dobrushin condition.
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Chapter 4

A combinatorial view of mixing on

the integer lattice

In this chapter we discuss relationships between mixing in time and in space for sys-

tems on the integer lattice Z
d. The “sub-exponential growth” of this lattice gives rise to

a sharp equivalence between optimal temporal mixing of the Glauber dynamics (as in Def-

inition 2.7), and strong spatial mixing (as in Definition 2.4). Notice that both forms of

mixing in this equivalence are uniform in the boundary condition. (For boundary-specific

equivalences, see Chapters 5 (for systems on trees) and 6 (for systems on the square integer

lattice).)

Variants of the above equivalence have been explored by a number of previous au-

thors, using various notions of mixing in both time and space. This line of work was initiated

by Holley [Hol85] and Aizenman and Holley [AH87], followed by Zegarlinski [Zeg90] and

culminating in the work of Stroock and Zegarlinski [SZ92], who were the first to establish

the above equivalence in full. We further mention Martinelli and Olivieri [MO94a, MO94b],

who later obtained sharper results by working with a weaker spatial mixing assumption, and

Cesi [Ces01], who recently simplified some of the proofs. See also [Mar98] for a review of

related results.

The references mentioned above make crucial use of functional analysis in their

proofs, and usually discuss the quantities cgap and csob (defined in Section 2.3.2) as a mea-

sure of mixing in time. In this chapter, we give purely combinatorial proofs of this equiv-

alence, based on the elementary technique of coupling probability distributions. Although
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some of the ideas we use have appeared before, our main contribution lies in presenting a

complete argument which is purely combinatorial, where the reader does not need to resort

to concepts from functional analysis.

We note that the result we present in the direction going from strong spatial mixing

to optimal temporal mixing of the Glauber dynamics is limited in the sense that it only

applies to monotone systems. For general systems, however, we show that strong spatial

mixing implies optimal temporal mixing of the dynamics based on blocks of large enough

radius. The corresponding implication for the (single-site) Glauber dynamics in the general

case is known [Ces01, Mar98, MO94b, SZ92], but currently we do not have a combinatorial

proof of it.

Before going on to the formal discussion, let us illustrate the above equivalence1

by discussing it in the context of the Ising model (as defined in Example 2.1) on the integer

lattice Z
d. Recall that in the definition of the Ising model, β stands for the inverse tempera-

ture and h for an external field. The following fact is an example of the equivalence between

temporal and spatial mixing: There exists a critical β̂c such that, when h = 0 (no external

field), for β < β̂c both optimal temporal mixing uniformly in the boundary condition and

strong spatial mixing hold, while for β > β̂c both fail.

It is worth mentioning here that, in the special case of the Ising model on the

square lattice Z
2, the critical β̂c mentioned above coincides [MOS94] with the critical in-

verse temperature βc at which a phase transition occurs in the infinite volume limit, namely,

for β < βc there exists a unique infinite volume Gibbs measure while for β > βc there are

multiple such measures. Notice that in general it is not true that the two critical inverse

temperatures β̂c and βc coincide, and there are examples where the infinite volume Gibbs

measure is unique while strong spatial mixing does not hold (see [Mar98] for a discussion

on this matter).

Still in the special case of the Ising model on Z
2, the corresponding “phase transi-

tion” in the mixing time is known to be very sharp [CGMS96]. Specifically, for β > β̂c = βc,

not only does optimal temporal mixing not hold but in fact, for the free boundary condi-

tion, the mixing time is super-polynomial (specifically, Θ(m exp(c
√

n)) for some constant

c > 0). For dimensions d ≥ 3, a similar result (mixing time Θ(m exp(cn1−1/d)) for the free

1Strictly speaking, the discussion in the following three paragraphs applies to slightly modified definitions

of spatial and temporal mixing where the region Ψ is restricted to have a “nice” shape (see remark following

Definition 2.4).
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boundary) applies for low enough temperatures, but is not known to go all the way to the

critical temperature, i.e., for all β > βc.

The rest of the chapter is organized as follows. Section 4.1 includes definitions

new to this chapter and precise statements of results. In Section 4.2 we list a few basic tools

we use in the proofs. In Section 4.3 we prove that optimal temporal mixing implies spatial

mixing, while in Section 4.4 we prove the converse, first for monotone systems and then for

general systems.

4.1 Definitions and statements of results

Our focus in this chapter is on systems defined on the d-dimensional integer lattice2, i.e.,

where the vertex set V = Z
d and (v, u) ∈ E, denoted v ∼ u, if and only if

∑d
i=1 |vi−ui| = 1.

The dynamics we focus on is Glauber (single site), but we consider other collections of

blocks as well. Recall that we say that a collection of blocks {Θi} is of bounded diameter if

there exists a constant r such that the diameter of any block Θi is at most r. We also discuss

a specific collection of bounded-diameter blocks: let QL = [1, . . . , L]d be the d-dimensional

regular box of side length L; we write HB(L) for the (heat-bath) dynamics based on the

collection of translations of QL, i.e.,
{
Θz = QL + z : z ∈ Z

d
}

.

We denote instances of the dynamics by (Xt) (or (Yt)), where Xt is the random

variable denoting the configuration at time t, starting from X0. We write Xt[v] for the spin

at v at time t, and similarly, Xt[Λ] for the configuration on Λ at time t.

4.1.1 Monotone systems

Some of the statements in this paper apply only to monotone systems. In a monotone

system, each site v is associated with a linear ordering of the spin space, denoted by �v.

Since the spin space is finite, each of the linear orderings has unique maximal and minimal

elements, which we call the (+) and (−) elements respectively. The single-site orderings

give rise to a partial ordering �Ψ of the configuration space. Specifically, τ (1) �Ψ τ (2)

if and only if τ
(1)
v �v τ

(2)
v for every v ∈ Ψ. The system is monotone with respect to the

above partial ordering if, for every region Ψ and any two boundary configurations τ (1)

2Most of our results hold — with suitable modifications — for any lattice with “sub-exponential growth”

(i.e., the volume of increasing balls around any site increases subexponentially with the radius). For simplicity,

in this chapter we focus just on Z
d.
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and τ (2) such that τ (1) �∂Ψ τ (2), the Gibbs distribution µτ (1)

Ψ statistically dominates the Gibbs

distribution µτ (2)

Ψ with respect to �Ψ. Equivalently, the two distributions can be coupled such

that with probability 1, σ(1) �Ψ σ(2), where σ(1) and σ(2) are a pair of coupled configurations

chosen from µτ (1)

Ψ and µτ (2)

Ψ respectively. Notice that it is enough that the above property

holds for all single sites to ensure that it holds for all regions Ψ. Also, since the single-site

orderings are linear, the system is “realizably” monotone [FM01]. This means that, given

a collection of boundary configurations τ (1), τ (2), . . . , τ (k), we can simultaneously couple

the k corresponding Gibbs distributions such that if τ (i) �∂Ψ τ (j), the corresponding coupled

configurations satisfy σ(i) �Ψ σ(j) with probability 1 (simultaneously for each such pair i, j).

Many well known spin systems are monotone, including the Ising model and the

hard-core model (independent sets).

4.1.2 Systems with hard constraints

Throughout this chapter, we assume the spin systems are permissive (see discussion in Sec-

tion 2.1). In particular, when we say “arbitrary spin system”, we mean “arbitrary permissive

spin system”. Recall that in permissive systems µτ
Λ is well defined for any choice of τ and Λ,

and that the transitions of the Markov chains we discuss are well defined for any current

configuration, even if it is not in the support of the stationary distribution. Furthermore,

the chain is guaranteed to reach a configuration in the support at some finite time, and thus

converge to the stationary Gibbs distribution. Hence, without loss of generality, we may

think of the chains as running on the whole configuration space Ωη
Ψ. In particular, when we

say the dynamics has optimal temporal mixing (see Definition 2.7), we mean that the error

bound applies to chains starting from an arbitrary configuration in Ωη
Ψ, including those not

in the support of µη
Ψ. Notice, however, that this has a negligible quantitative effect since

once every site is updated at least once (which takes O(m log n) time with high probability)

the configuration is guaranteed to be in the support of µη
Ψ.

4.1.3 Results

Several notions of mixing in time and in space for models on integer lattices are known to

be equivalent to one another [Ces01, Mar98, MO94a, MO94b, SZ92], though the proofs

are often rather complex and cast in the language of functional analysis. In this chapter we

present combinatorial proofs of the following implications.
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Theorem 4.1 For any collection of bounded-diameter blocks {Θi}, if the dynamics based on

{Θi} has optimal temporal mixing for some boundary condition η then the system has weak

spatial mixing; if in addition the optimal temporal mixing is uniform in the boundary condition

then the system has strong spatial mixing.

For monotone systems we show the converse as well:

Theorem 4.2 If a monotone system has strong spatial mixing then the Glauber dynamics has

optimal temporal mixing uniformly in the boundary condition.

In the general case (without assuming monotonicity), we show:

Theorem 4.3 If a system has strong spatial mixing then there exists a finite integer L for which

the heat-bath block dynamics HB(L) has optimal temporal mixing uniformly in the boundary

condition.

Notice that strong spatial mixing implies optimal temporal mixing of the (single-

site) Glauber dynamics in the general case as well [Ces01, Mar98, MO94b, SZ92], but we

have not yet been able to find a purely combinatorial proof of this implication. The main

obstacle is translating the rapid mixing result for the block dynamics into rapid mixing of

the single-site dynamics (at the cost of only a constant factor), a problem which is still

open for general spin systems. The functional analysis proofs mentioned above analyze the

log-Sobolev constant, and show that strong spatial mixing implies bounded csob of HB(L),

uniformly in the boundary condition; the implication for the single-site dynamics follows

since csob of the latter is easily seen to differ from that of HB(L) by at most a constant factor

(that depends on L).

4.2 Preliminaries

In this section we describe some of the common tools we use in our proofs.

4.2.1 Coupling and mixing time

As we saw in Chapter 3, a common tool for bounding the total variation distance between

two distributions, and in particular for bounding the mixing time of Markov chains, is cou-

pling. Recall that a coupling of ν1 and ν2 is any joint distribution whose marginals are ν1
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and ν2 respectively. If σ1 and σ2 are a pair of random configurations chosen from a given

coupling of ν1 and ν2 then Pr(σ1 6= σ2) is an upper bound on the total variation distance

between ν1 and ν2. Also, there is always an optimal coupling, i.e., a coupling such that

Pr(σ1 6= σ2) = ‖ν1 − ν2‖.

In the proofs we give in this chapter we use the following coupling of the dynamics,

which we call an identity coupling. This coupling is similar to those used in Chapter 3, but

here we use a version that allows us to simultaneously couple any number of instances of

the chain. An identity coupling is determined by specifying, for each block Θ, a coupling

of all the Gibbs distributions (ranging over all possible values for the configuration of ∂Θ).

Let
{
τ (1), . . . , τ (k)

}
= S∂Θ denote the set of all possible configurations on ∂Θ. An identity

coupling is given by specifying a joint distribution κΘ whose marginals are µτ (1)

Θ , . . . , µτ (k)

Θ .

Given κΘ, we couple a collection of instances of the Glauber dynamics (X 1
t ), (X2

t ), . . . , (X`
t )

using a Markovian coupling (i.e., the joint distribution of X 1
t+1, . . . , X

`
t+1 is a function only

of the coupled configurations X1
t , . . . , X`

t ) where the coupled transition (X1
t , . . . , X`

t ) →
(X1

t+1, . . . , X
`
t+1) is as follows:

• Choose a block Θ u.a.r. from those that intersect Ψ (the same block for all chains).

• Choose a collection (σ(1), . . . , σ(k)) of configurations on Θ from the joint distribu-

tion κΘ.

• For every 1 ≤ i ≤ ` set X i
t+1[Θ] = σ(j) if and only if X i

t [∂Θ] = τ (j).

An important property of this coupling is that, if X i
t [∂Θ] = Xj

t [∂Θ], then X i
t+1[Θ] = Xj

t+1[Θ]

with probability 1. Notice that in a monotone system there exists a monotone identity cou-

pling, i.e., a joint distribution κΘ such that whenever τ (i) �∂Θ τ (j), σ(i) �Θ σ(j) with

probability 1.

We say that an identity coupling has optimal mixing for a boundary condition η if

for any region Ψ and any two instances (Xt), (Yt) of the dynamics for µη
Ψ, we have Pr(Xkm 6=

Ykm) ≤ Cn exp(−αk) for some constants C and α > 0, where the probability space is the

coupling of Xkm and Ykm resulting from the identity coupling of the two processes. No-

tice that optimal mixing of an identity coupling implies optimal temporal mixing of the

dynamics. Finally, the coupling time of an identity coupling is the minimum T such that

Pr(XT 6= YT ) ≤ 1
e for every pair of instances (Xt), (Yt). As a result, Pr(XkT 6= YkT ) ≤ e−k

for any positive integer k.
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4.2.2 Bounding the speed of propagation of information

A central idea in the analysis of the mixing time of the Glauber dynamics, in particular when

using spatial mixing assumptions, is to bound the speed at which information propagates

during the dynamical process. In this section we give a lemma of this sort following an

argument explained to us by van den Berg, based on the idea of paths of disagreement (also

known as disagreement percolation [Ber93]). The idea of bounding the speed of propaga-

tion of information originally appeared in [SZ92], and similar bounds can also be found

in [Mar98, KMP01]. The quantitative analysis in the argument in fact goes back to the

Richardson model [Ric73]. Our version below applies to the Glauber dynamics on general

graphs (as in [KMP01]), rather than just Z
d.

Lemma 4.4 Consider an arbitrary spin system on an arbitrary graph of maximum degree

b + 1. Let (Xt) and (Yt) be two copies of the Glauber dynamics on an arbitrary region Ψ such

that the two initial configurations agree everywhere except on some region A. Let B be another

region and let r = dist(A,B). Then, for any positive integer k ≤ r
be2 , if we run the dynamics

for T = km steps, Pr(XT [B] 6= YT [B]) ≤ 4min {|A|, |B|} ( bek
r )r, where the probability space is

the coupling of XT and YT resulting from any identity coupling of (Xt) and (Yt). In particular,

if T = km and dist(A,B) ≥ be2k, then Pr(XT [B] 6= YT [B]) ≤ 4min {|A|, |B|} e−dist(A,B).

In words, Lemma 4.4 states that in km steps, with high probability, information percolates a

distance of at most be2k. As we discuss in more detail following the proof, a slight modifica-

tion of the lemma applies to dynamics based on an arbitrary collection of bounded-diameter

blocks, where w.h.p. information does not percolate a distance larger than linear in k, with

the constant depending on the collection of blocks.

Proof: Since we couple Xt and Yt using an identity coupling, if at time zero v had the

same spin in both chains and at time T the spins at v differ then it must be the case that at

some time t′ ≤ T the site chosen to be updated was v and immediately before the update

of v at time t′ the two chains had different spins at one of the neighbors of v. Carrying this

argument inductively, if we assume that at time zero the only sites whose spins may differ

are included in A then in order for a site v to have different spins at time T there must be

a path of disagreement going from A to v. Specifically, there must be v0, v1, . . . , v` = v and

0 < t1 < t2 < . . . < t` ≤ T such that v0 ∈ A and for 1 ≤ i ≤ `, vi ∼ vi−1 and at time ti

the site chosen to be updated was vi. Notice that for a given path v0, . . . , v` the probability
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of this event occurring is at most
(T

`

)
( 1

m)`. Now, if the two configurations at time T differ

at some site in B, there must be a path of disagreement of length at least r = dist(A,B)

going from A to B. Since the number of (simple) paths of length ` going from A to B is

bounded from above by min {|A|, |B|} (b + 1)b`−1, we can conclude that the probability of a

disagreement in B at time T = km is at most

min {|A|, |B|} · b + 1

b
·

km∑

`=r

b`

(
km

`

)(
1

m

)`

≤ min {|A|, |B|} · b + 1

b
·
∞∑

`=r

(
bek

`

)`

≤ 4min {|A|, |B|}
(

bek

r

)r

,

where in the first inequality we use Sterling’s approximation, and in the second we used

the fact that r ≥ be2k.

Remark: Notice that in the above proof we did not assume that Xt and Yt have the same boundary

configuration outside Ψ. Indeed, the region A of initially disagreeing spins need not be included

in Ψ. Furthermore, we will often use Lemma 4.4 in a setting where some of the sites of Ψ are held

fixed throughout the process. Notice that the proof above is still valid in this setting (regardless of

whether or not the fixed spins disagree, i.e., are of sites in A). In fact, it is valid even if the two

compared chains have different sets of fixed sites, as long as the sites which are fixed in only one of

the chains are all included in the region A, i.e., we just assume that the spins of these sites disagree

in the two chains. An important point to keep in mind in these scenarios is that in both chains the

probability of a given site (or block) being updated in each step should still be 1/m. The scenarios

mentioned in this remark will become clearer when they arise in the proofs below.

We conclude this section by discussing the applicability of Lemma 4.4 to dynamics

based on collections of blocks other than single sites. Notice that the arguments in the

proof are still valid in this setting, but now, rather than a disagreement path of sites, we

have to consider a disagreement path of blocks, where two blocks Θi and Θj are neighbors

if and only if Θi ∩ ∂Θj 6= ∅. (Notice that this is indeed a symmetric relation). Namely, if we

construct a new graph where each vertex is a block and the edges are given according to the

above relation, then it is not too difficult to see that the rate of percolation of disagreements

in the new graph is bounded as in Lemma 4.4. Notice, however, that we have to consider the

maximum degree of the block graph, which may be larger than that of the original graph.

Similarly, the distance between A and B that we appeal to in the proof is the shortest

distance in the block graph between two blocks that intersect A and B respectively, and this

distance may be shorter than dist(A,B) in the original graph. Nevertheless, if the blocks
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are of bounded diameter, then the maximum degree of the block graph is bounded, and the

block distance between A and B is linear in the original distance between them. Thus it

is still true that, in km steps, disagreements do not percolate a distance larger than ck for

some constant c, with very high probability. (The probability they do is again exponentially

small in this distance.)

4.3 From temporal to spatial mixing

In this section we prove Theorem 4.1, which states that if a dynamics based on a collection

of bounded-diameter blocks has optimal temporal mixing then spatial mixing holds. Theo-

rem 4.1 follows by combining the two theorems stated below. The first of these is specific

to integer lattices (or to graphs of subexponential growth), and states that on such graphs

and for a dynamics based on bounded-diameter blocks, if optimal temporal mixing holds

then optimal projected temporal mixing (as in Definition 2.8) holds. The second theorem

states that on any underlying graph, optimal projected temporal mixing of a dynamics as

above implies strong spatial mixing.

Theorem 4.5 Consider an arbitrary spin system on Z
d, a collection of bounded-diameter

blocks {Θi}, and a (boundary) configuration η. If the dynamics based on {Θi} has optimal

temporal mixing for η then it also has optimal projected temporal mixing for η.

Theorem 4.6 For any spin system on an any underlying graph, and for any collection of

bounded-diameter blocks {Θi}:

(i) if the dynamics based on {Θi} has optimal projected temporal mixing for some boundary

condition η, then the system has weak spatial mixing;

(ii) if in addition optimal projected temporal mixing holds uniformly in the boundary condi-

tion, then the system has strong spatial mixing.

Remark: We note that, as will be apparent from the proof, Theorem 4.5 holds for any graph

of subexponential growth rather than just Z
d. However, subexponential growth of the underlying

graph is required for the theorem to hold. Indeed, this theorem breaks down on trees. Explicit

counterexamples can be found in Chapter 5, where we discuss various settings on trees for which

optimal temporal mixing holds but the Gibbs measure is not unique, and in particular weak spatial

mixing and hence optimal projected temporal mixing do not hold.
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The proof of Theorem 4.1 clearly follows by combining Theorems 4.5 and 4.6, and

we proceed with the proofs of the latter two. In order to make for an easier reading, both

proofs are given rigorously only for the Glauber dynamics; when appropriate, we make note

of the modifications needed in order for the arguments to hold for a dynamics based on an

arbitrary collection of bounded-diameter blocks.

Proof of Theorem 4.5: Recall that the optimal temporal mixing assumption means that

there exist constants C and α > 0 such that for every Ψ, and any instance (Xt) of the

dynamics for µη
Ψ,

‖Xkm − µη
Ψ‖ ≤ C|Ψ| exp(−αk).

By the triangle inequality, we can assume w.l.o.g. that for any two instances (Xt) and (Yt)

of the dynamics,

‖Xkm − Ykm‖ ≤ C|Ψ| exp(−αk).

We have to show that under this assumption, there exist constants C ′ and α′ > 0 such that

for every Ψ and Λ ⊆ Ψ, and any instance (Xt) of the dynamics for µη
Ψ,

‖Xkm − µη
Ψ‖Λ ≤ C ′|Λ| exp(−α′k).

We will in fact show that for any two instances (Xt) and (Yt),

‖Xkm − Ykm‖Λ ≤ C ′|Λ| exp(−α′k).

The idea of the proof is one we use throughout this paper, which involves using

Lemma 4.4 in order to localize the dynamics. Namely, when we run the dynamics for km

steps, with high probability information from sites which are at distance at least (2d−1)e2k

from Λ does not percolate into Λ. Therefore, if we take a region Λk surrounding Λ and

whose boundaries are at distance at least (2d − 1)e2k from Λ, we can assume that the

sites on the boundary of Λk are fixed throughout the process. Thus, we can use the optimal

temporal mixing bound for a dynamics on the local region Λk, whose volume is smaller than

that of Ψ. As shown below, the fact that the volume of Λk grows only subexponentially in k

(this is where where we use the subexponential growth of Z
d) gives the required bound. An

additional point we need to make in order to carry out the above argument is that, when

running the dynamics on Ψ, with high probability an appropriate portion of the time is

spent in the region Λk. This, however, is an easy consequence of the Chernoff bound.
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Λ

Ψ

Λk

Figure 4.1: The region Λk, consisting of all sites in Ψ that are within distance (2d − 1)e2k
from Λ.

We proceed with the formal proof. Consider the region of all sites within distance

(2d − 1)e2k from Λ, and let Λk be the intersection of this region with Ψ (see Figure 4.1).

Notice that dist(Λ,Ψ \ Λk) ≥ (2d − 1)e2k and that |Λk| ≤ [2(2d − 1)e2k]d|Λ|.
Recall that we denote by m the number of blocks from which the dynamics chooses

a block to update in each step, and that m ≡ m(Ψ) (i.e., m(Ψ) is the number of blocks

intersecting Ψ). Since in the proof we consider processes both on Ψ and on Λk, we write

m[Λk] for m(Λk) (and retain the notation m for m(Ψ).)

In addition to the chains (Xt) and (Yt), we consider two additional chains, denoted

by (XΛk
t ) and (Y Λk

t ), whose initial configurations inside Λk are the same as (Xt) and (Yt)

respectively. The configuration outside Λk is given by η in both (XΛk
t ) and (Y Λk

t ) and

remains fixed throughout the process, i.e., (XΛk
t ) and (Y Λk

t ) represent modified processes

where, in a given step, if the chosen block to be updated is outside Λk then the configuration

on that block remains unchanged, while if it intersects Λk then the intersection with Λk is

updated as usual. Notice that this modified process is the same as running the dynamics for

sampling from µη
Λk

, except that the probability of a block being chosen at a given step is 1
m

instead of 1
m[Λk] .

Using the triangle inequality, we have

‖Xkm − Ykm‖Λ ≤ ‖Xkm − XΛk
km‖Λ + ‖XΛk

km − Y Λk
km‖Λ + ‖Y Λk

km − Ykm‖Λ. (4.1)

Lemma 4.4 (together with the remark following it) gives a bound on the first and third

terms in the r.h.s. of (4.1). To see this, couple (Xt) and (XΛk
t ) using an identity coupling,

i.e., an update of a block in (Xt) is coupled with an update of the same block in (XΛk
t ),

where we note that an update of a block outside Λk in (XΛk
t ) means that the configuration

remains the same. Notice that at time zero the two chains agree on Λk. (Clearly, both agree
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outside Ψ throughout the process). Disagreement may percolate from Ψ \ Λk into the bulk

of Λk as we run the chains, but since dist(Λ,Ψ \ Λk) ≥ (2d − 1)e2k, we can use Lemma 4.4

to deduce that ‖Xkm − XΛk
km‖Λ ≤ 4|Λ|e−(2d−1)e2k. (Here we used the bound Lemma 4.4

gives for the Glauber dynamics; see the end of this proof for the modifications required

for a dynamics based on an arbitrary collection of bounded-diameter blocks.) By the same

argument, ‖Ykm − Y Λk
km‖Λ ≤ 4|Λ|e−(2d−1)e2k.

It remains to bound ‖XΛk
km − Y Λk

km‖Λ. Recall that both these chains have η fixed

outside Λk so we can use the optimal temporal mixing assumption for a process on Λk.

Notice that, when running the chain XΛk
t for km steps,

m[Λk]
m · km = km[Λk] of the steps

hit Λk on average. Using a Chernoff bound, with probability at least 1 − exp(− km[Λk]
8 ), the

number of steps that hit Λk is at least
km[Λk]

2 . Thus, we can use the bound optimal temporal

mixing gives for running the dynamics on Λk for
km[Λk]

2 steps. Specifically,

‖XΛk
km − Y Λk

km‖Λ ≤ ‖XΛk
km − Y Λk

km‖Λk

≤ C|Λk| exp

(
−α · k

2

)
+ exp

(
−km[Λk]

8

)

≤ C[2(2d − 1)e2k]d|Λ| exp

(
−α · k

2

)
+ exp

(
−k

8

)
.

To conclude, by applying the above three bounds on the three terms on the r.h.s. of (4.1)

respectively, we get:

‖Xkm − Ykm‖Λ ≤ 8|Λ|e−(2d−1)e2k + C[2(2d − 1)e2k]d|Λ| exp

(
−α · k

2

)
+ exp

(
−k

8

)

≤ C ′|Λ| exp(−α′ · k),

for appropriate constants C ′ and α′ > 0, as required.

We conclude the proof by mentioning the modifications needed in order for the

proof to hold for a dynamics based on any collection of bounded-diameter blocks. The only

place where we used the fact that the dynamics is Glauber is in applying the bound from

Lemma 4.4. When we consider other collections of blocks, we need to set the radius of Λk

accordingly, i.e., such that information has insufficient time to percolate from Ψ \ Λk to Λ.

However, as long as the collection of blocks is of bounded diameter, it is enough to take the

radius linear in k in order for the probability of a disagreement percolating from outside Λk

into Λ to be exponentially small in k. It is easy to see that the rest of the proof carries

through in the same manner assuming these properties of Λk.



76

Proof of Theorem 4.6: Both parts of the theorem follow from the following claim:

Claim 4.7 For any boundary condition η, if the dynamics given in Theorem 4.6 has optimal

projected temporal mixing for η then there exist constants C and α > 0 such that, for every Ψ,

Λ ⊆ Ψ, ∆ ⊆ ∂Ψ, and all σ that agree with η off ∆,

‖µη
Ψ − µσ

Ψ‖Λ ≤ C|Λ| exp(−α · dist(Λ,∆)). (4.2)

Part (ii) of Theorem 4.6 follows immediately from this claim because, under the hypothesis

of part (ii) and assuming the claim, (4.2) holds for all η, i.e., the system has strong spatial

mixing. For part (i) we use the triangle inequality to conclude that, under the hypothesis of

this part, for every σ and τ ,

‖µσ
Ψ − µτ

Ψ‖Λ ≤ ‖µσ
Ψ − µη

Ψ‖Λ + ‖µη
Ψ − µτ

Ψ‖Λ ≤ 2C|Λ| exp(−α · dist(Λ, ∂Ψ)),

i.e., the system has weak spatial mixing. We thus go on to prove Claim 4.7.

The idea of the proof is that, when running the Glauber dynamics, the time needed

in order for the projected distribution on Λ to be close to the stationary one is less than the

time it takes for the disagreements on ∆ to percolate into Λ. Formally, consider the follow-

ing two instances of the Glauber dynamics on Ψ. The first, denoted by Zt, is an instance with

η as the boundary configuration while the second, denoted by Z ′t, is an instance with σ as

the boundary configuration. The initial configuration of Ψ in both chains is chosen from the

distribution µσ
Ψ. Notice that this is the stationary distribution of Z ′t and therefore Z ′t = µσ

Ψ

for all t.

Using the triangle inequality, we have

‖µη
Ψ − µσ

Ψ‖Λ = ‖µη
Ψ − Z ′t‖Λ ≤ ‖µη

Ψ − Zt‖Λ + ‖Zt − Z ′t‖Λ.

By letting t = dist(∆,Λ)
(2d−1)e2 · m we can make sure both terms are small. We bound the first term

using the projected temporal mixing assumption. Namely, for t = dist(∆,Λ)
(2d−1)e2 ·m we have ‖µη

Ψ−
Zt‖Λ ≤ C ′|Λ| exp(−α′ · dist(∆,Λ)

(2d−1)e2 ), where C ′ and α′ > 0 are the constants in the definition

of optimal projected temporal mixing. We use Lemma 4.4 in order to bound the second

term. Notice that Zt and Z ′t have the same initial distribution on Ψ, and thus they can be

coupled such that at time zero they have the same configuration on Ψ with probability 1.

We continue to couple the two processes using an identity coupling. Disagreement may
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percolate from ∆, but since dist(∆,Λ) = (2d − 1)e2 t
m then by Lemma 4.4, ‖Zt − Z ′t‖Λ ≤

4|Λ|e−dist(∆,Λ). Putting the two bounds together we get

‖µη
Ψ − µσ

Ψ‖Λ ≤ C ′|Λ| exp

(
− α′

(2d − 1)e2
· dist(∆,Λ)

)
+ 4|Λ|e−dist(∆,Λ)

≤ C|Λ| exp(−α · dist(∆,Λ)),

for some constants C and α > 0, as required.

We conclude the proof by mentioning the modifications needed in order for the

proof to hold for a dynamics based on an arbitrary collection of bounded-diameter blocks.

Again, the only place where we used the fact that the dynamics is Glauber is in applying

the bound from Lemma 4.4. Indeed, when we consider other collections of blocks, we need

to set the parameter t accordingly, i.e., such that information does not have enough time

to percolate from ∆ into Λ. However, as long as the collection of blocks is of bounded

diameter, it is enough to take t linear in dist(∆,Λ) ·m in order for the probability of a

disagreement percolating from ∆ to Λ to be exponentially small in dist(∆,Λ). Therefore,

the proof carries through for such collections of blocks.

Remark: Notice that the arguments in this section were essentially boundary specific, and the

only place where we used uniformity in the boundary condition is in applying Claim 4.7 for each η

separately in order to establish (4.2) for every η (i.e., strong spatial mixing). Indeed, it is not too

difficult to see from the same claim that optimal projected temporal mixing for η implies exponential

decay of correlations for η (as in Definition 2.5). In fact, it is known [KMP01] that a weaker condition

is enough for the latter to hold: if cgap of a dynamics based on bounded-diameter blocks is bounded

for η then the Gibbs distribution conditioned on η exhibits exponential decay of correlations.

4.4 From spatial to temporal mixing

In this section we prove that strong spatial mixing implies optimal temporal mixing. We

first prove this for monotone systems where optimal temporal mixing is established for

the Glauber dynamics, and then for general systems, where optimal temporal mixing is

established for the block dynamics HB(L) with large enough L.

4.4.1 The monotone case

In this section we show that in monotone systems, strong spatial mixing implies optimal

temporal mixing of the Glauber dynamics uniformly in the boundary condition (Theo-
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rem 4.2). We state two theorems whose combination gives Theorem 4.2. The first theorem,

whose proof uses ideas from the proof of Theorem 4.2 of [MO94a], states that the strong

spatial mixing assumption implies O(m log2 n) coupling time of any monotone identity cou-

pling, uniformly in the volume n and in the boundary configuration. The second theorem,

which is based on Theorem 3.12 of [Mar98], states (for general systems) that if there exists

n0 for which the coupling time of any identity coupling of the Glauber dynamics on regions

of volume n0 is at most m c
log n0

n
1/d
0 for an appropriate constant c, then this identity coupling

has optimal mixing. In particular, any upper bound of o(m n1/d

log n) on the asymptotic coupling

time immediately implies that the identity coupling has optimal mixing. Formally, the two

theorems read as follows:

Theorem 4.8 Strong spatial mixing implies that there exists a constant c such that the cou-

pling time of any monotone identity coupling of the Glauber dynamics for any region Ψ and

arbitrary boundary condition is at most T (n) = cm(log n)2, where n = |Ψ|.

Theorem 4.9 Fix a boundary condition η, and suppose there exists an identity coupling such

that for all regions Λ of volume at most n0, where n0 is a sufficiently large constant, the

coupling time of the dynamics for µη
Λ is at most m 1

8(2d−1)e2

n
1/d
0

log n0
. Then for all n, all regions Ψ of

volume n, any two instances (Xt), (Yt) of the dynamics for µη
Ψ, and every integer k, Pr(Xkm 6=

Ykm) ≤ |Ψ| exp(−ck), where c = 2(2d − 1)e2n
− 1

d
0 and the probability space is the coupling

of (Xt) and (Yt) resulting from the identity coupling above; namely, this identity coupling has

optimal mixing for η.

Theorem 4.2 clearly follows from the combination of Theorems 4.8 and 4.9, and we proceed

with the proofs of the latter two.

Proof of Theorem 4.8: As in our earlier arguments, the idea of the proof is again to localize

the dynamics, which allows us to use inductive bounds from smaller regions. However, here

we use strong spatial mixing to achieve the localization, rather than the bound on the speed

of propagation of information from Lemma 4.4.

Fix a large enough n0 (to be determined later). By choosing an appropriate con-

stant c = c(n0), the coupling time statement is true for all n ≤ n0. This is a consequence of

the fact that any two instances of the chain will coalesce in finite time under any monotone

coupling, e.g., because eventually both instances will simultaneously reach a maximal or

minimal state. We go on to show the statement of the theorem is valid for n > n0, by
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inductively assuming its validity for volumes k ≤ [2α−1 log(3eC(q − 1)n)]d, where α,C are

the constants in the definition of strong spatial mixing (Definition 2.4), and q = |S| is the

size of the spin space.

Consider an arbitrary region Ψ of volume n and an arbitrary boundary condition η.

Let (Xt) and (Yt) be two instances of the Glauber dynamics for µη
Ψ with arbitrary initial

configurations inside Ψ. We will show that after T (n) steps, for every site v ∈ Ψ, the

probability (under the monotone identity coupling) that the two spins at v differ is at most

1
en , and therefore, the probability that the two configurations (on the whole of Ψ) differ is

at most 1
e , as required.

Consider the regular box of radius α−1 log(3eC(q−1)n) around v, and let Λv be the

intersection of this box with Ψ. Notice that if v is close to the boundary of Λv then it is also

close to the boundary of Ψ, but in any case, dist(v, ∂Λv \ ∂Ψ) ≥ α−1 log(3eC(q − 1)n). This

fact will be useful for applying the strong spatial mixing assumption later on. Let k = |Λv |
and notice that k ≤ [2 ·α−1 log(3eCn)]d. We now introduce four additional chains that may

only update sites in Λv. We will couple these chains along with (Xt) and (Yt) such that,

whenever the site chosen to be updated is outside Λv only Xt and Yt are updated while the

additional four chains remain unchanged. On the other hand, when the site to be updated

belongs to Λv all six chains are updated simultaneously according to the monotone identity

coupling. Below we describe the additional four chains and their initial configurations. Let

ηΨ,+ and ηΨ,− denote the configurations in which the spins of sites in Ψ are all-(+) and

all-(−) respectively, and where the configuration outside Ψ is given by η. The four chains

are:

1. Q+
t : the chain starting from ηΨ,+.

2. Q−t : the chain starting from ηΨ,−.

3. Z+
t : the chain whose initial configuration is chosen at random from the Gibbs distri-

bution µηΨ,+

Λv
.

4. Z−t : the chain whose initial configuration is chosen at random from the Gibbs distri-

bution µηΨ,−

Λv
.

Notice that we can simultaneously couple the six chains such that at time zero,

with probability one, Q+
0 � X0 � Q−0 , Q+

0 � Y0 � Q−0 , and Z+
t � Z−t . Since we use a
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monotone identity coupling, we have by induction that these relations hold for all t. Thus,

we have

Pr(Xt[v] 6= Yt[v]) ≤ Pr(Q+
t [v] 6= Q−t [v]) ≤

Pr(Q+
t [v] 6= Z+

t [v]) + Pr(Z+
t [v] 6= Z−t [v]) + Pr(Z−t [v] 6= Q−t [v]).

We use the strong spatial mixing assumption to bound the middle term of the

last expression. Notice that Z+
t and Z−t are stationary chains, and in particular, they are

the Gibbs distributions µηΨ,+

Λv
and µηΨ,−

Λv
respectively. Thus, by the strong spatial mixing

assumption,

‖Z+
t − Z−t ‖{v} = ‖µηΨ,+

Λv
− µηΨ,−

Λv
‖{v} ≤ C exp(−α · dist(v, ∂Λv \ ∂Ψ)),

where we used the fact that ηΨ,+ and ηΨ,− agree on ∂Ψ. This bound on the total variation

distance does not guarantee the same bound on disagreement under the coupling because

the coupling we use is not necessarily the optimal one. However, monotonicity guarantees

that our coupling is within a factor of q − 1 (recall that q is the size of the spin space) from

the optimal coupling, as explained next. We embed the ordering associated with v in the

linear ordering 1, 2, . . . , q with integer arithmetic. Since the spins at v are coupled such that

with probability one Z+
t [v] ≥ Z−t [v], we have

Pr(Z+
t [v] 6= Z−t [v]) ≤ E(Z+

t [v] − Z−t [v])

= E(Z+
t [v]) − E(Z−t [v])

≤ (q − 1)‖Z+
t − Z−t ‖{v}

≤ (q − 1)C exp(−α · dist(v, ∂Λv \ ∂Ψ))

≤ 1

3en
.

Notice that in the second inequality above we used an optimal coupling of Z+
t [v] and Z−t [v]

together with the fact that the oscillation of any function whose range is [1, q] is at most q−1.

In order to complete the proof we have to show that Pr(Q+
t [v] 6= Z+

t [v]) ≤ 1
3en

when t = T (n) (by symmetry, the same will hold for the (−)-chains). Recall that both (Q+
t )

and (Z+
t ) are instances of chains in which the configuration outside Λv is fixed as ηΨ,+

throughout the process, i.e., they are the same as instances of the dynamics for sampling

from µηΨ,+

Λv
, except that the probability of a site being updated is 1

m = 1
|Ψ| rather than

1
m[Λv ] = 1

|Λv| . Notice that when running the identity coupling for T (n) = cm(log n)2 steps,
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m[Λv ]
m cm(log n)2 = cm[Λv ](log n)2 steps hit Λv on average, and by a Chernoff bound, with

probability at least 1 − 1
6en the number of steps that hit Λv is at least

1

2
cm[Λv](log n)2 = (2 log n)cm[Λv]

log n

4
≥ (2 log n)cm[Λv](log k)2

for large enough n. If we assume that indeed Λv is hit this often then we can use the

induction hypothesis, which gives a bound on the probability of a disagreement under

the identity coupling of two instances of the dynamics for µηΨ,+

Λv
. Indeed, after T (k) =

cm[Λv](log k)2 steps in Λv, the configurations (on the whole of Λv) disagree with probabil-

ity at most 1
e , and thus after (2 log n)T (k) steps, they disagree with probability at most 1

n2 .

Hence, Pr(Q+
T (n)[v] 6= Z+

T (n)[v]) ≤ 1
6en + 1

n2 ≤ 1
3en for large enough n, as required.

Remark: The reader may have noticed that, by carrying through a more careful analysis in the

above proof, one can get a slightly better bound — for example, O(m log n(log log n)2) — on the

coupling time. However, since in any case we reduce the coupling time to O(m log n) using Theo-

rem 4.9, we chose to keep the calculations simpler by only showing a bound of O(m log2 n).

Proof of Theorem 4.9: Consider the Glauber dynamics on Ψ with boundary condition η.

We will show that for any two instances of the chain (Xt) and (Yt) and any v ∈ Ψ we have

Pr(Xkm[v] 6= Ykm[v]) ≤ exp(−ck) under the given identity coupling. Using a union bound,

this implies that Pr(Xkm 6= Ykm) ≤ |Ψ| exp(−ck).

Let `0 = d1
c e = d n

1/d
0

2(2d−1)e2 e. As before, we will use Lemma 4.4 to localize the

dynamics. Together with the hypothesis of the theorem, this will imply that after `0m steps

the spins at v agree with high probability. What we want, however, is that the probability

of disagreement will continue to decay exponentially with the number of steps. Notice that

such a result would follow if, once the spins at v agreed, they continued to agree through

the rest of the process, but this is clearly not the case. However, using the subexponential

growth of Z
d and another localization argument, we can show that if all the spins within

a large enough radius around v agree at a given time, then the spins at v will continue to

agree for sufficiently many steps (depending on the radius of agreement). Bootstrapping

from the sufficiently small probability of disagreement after `0m steps, we get the required

exponential decay.

We proceed with the formal proof. Let ρ(k) = maxX0,Y0,v∈Ψ Pr(Xkm[v] 6= Ykm[v]).

We have the following two claims.
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Claim 4.10 Under the hypothesis of the theorem,

ρ(`0) ≤
1

e2d(n0 + 1)
=

1

e2d([2(2d − 1)e2`0]d + 1)
.

Claim 4.11 Without any assumptions, for any k1 and k2,

ρ(k1 + k2) ≤ [2(2d − 1)e2k2]
dρ(k1)ρ(k2) + 4e−k2 .

Theorem 4.9 follows from the combination of the above two claims. To see this, let φ(k) =

2d([2(2d−1)e2k]d +1) ·max
{

ρ(k), 2e−
k
2

}
. Using Claim 4.11, we have by an explicit calcula-

tion that φ(2k) ≤ φ(k)2. On the other hand, from Claim 4.10 we get that φ(`0) ≤ 1
e (where

we used the fact that `0 is large enough to handle the case of ρ(`0) < 2e−
`0
2 ). We then con-

clude that ρ(k) ≤ φ(k) ≤ exp(− k
`0

), as required. This completes the proof of Theorem 4.9

(assuming Claims 4.10 and 4.11).

Proof of Claim 4.10: Let v ∈ Ψ be any site. As in Theorem 4.5, the idea is to take a regular

box of volume n0 around v. Then, since we run the coupled chains for only `0m steps,

information from the boundary of this box does not have enough time to percolate to v. We

can therefore assume the boundaries around this box are fixed. But then, the assumption

of the theorem guarantees that the spins at v will agree with the required probability.

Formally, let Λv be the intersection of the regular box of volume n0 around v

with Ψ. Let (XΛv
t ) and (Y Λv

t ) be two chains whose initial configurations inside Λv agree

with X0 and Y0 respectively, and whose configuration outside Λv is fixed to η throughout

the process. We have Pr(Xt[v] 6= Yt[v]) ≤ Pr(Xt[v] 6= XΛv
t [v]) + Pr(XΛv

t [v] 6= Y Λv
t [v]) +

Pr(Y Λv
t [v] 6= Yt[v]). Notice that dist(v, ∂Λv \ ∂Ψ) ≥ 1

2n
1/d
0 = (2d − 1)e2`0. Therefore, using

Lemma 4.4, we have Pr(X`0m[v] 6= XΛv
`0m[v]) ≤ 4e−(2d−1)e2`0 .

We go on to bound Pr(XΛv
`0m[v] 6= Y Λv

`0m[v]). Notice that since in both chains the

configuration outside Λv is fixed to η, and since |Λv| ≤ n0, we can use the hypothesis

of the theorem to bound the above probability. If we run the coupled chains for `0m

steps, then with probability at least 1 − exp(− `0
8 m[Λv]) the number of steps that hit Λv

is at least `0
2 m[Λv]. If indeed that many steps hit Λv then according to the hypothesis of

the theorem, Pr(XΛv
t [v] 6= Y Λv

t [v]) ≤ e−2 log n0 = n−2
0 . Thus, Pr(XΛv

`0m[v] 6= Y Λv
`0m[v]) ≤

n−2
0 + exp(− `0

8 ). Putting this together with the result of the previous paragraph we get

Pr(X`0m[v] 6= Y`0m[v]) ≤ n−2
0 +exp(− `0

8 )+8e−(2d−1)e2`0 ≤ 1
e2d(n0+1)

for sufficiently large n0,

as required.
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Proof of Claim 4.11: We use Lemma 4.4 once again, this time in the sense that in k2m

steps, information can percolate over a distance of at most (2d−1)e2k2. Thus, if the spins of

all the sites within that radius from v agree after k1m steps, then the spin at v will continue

to agree after (k1 + k2)m steps with high probability.

Formally, let Λv,k2 be the intersection of the regular box of radius (2d − 1)e2k2

around v with Ψ, and let A stand for the event that Xk1m[Λv,k2 ] 6= Yk1m[Λv,k2 ]. Then, using

Lemma 4.4 we have

Pr(X(k1+k2)m[v] 6= Y(k1+k2)m[v]) ≤ (1 − Pr(A))4e−(2d−1)e2k2 + Pr(A)ρ(k2).

The proof is concluded once we notice that Pr(A) ≤ |Λv,k2 |ρ(k1) ≤ [2(2d − 1)e2k2]
dρ(k1).

Remark: Notice that, in fact, the proof of Theorem 4.9 gives the stronger property of optimal

projected temporal mixing, as does Theorem 4.5. The hypothesis of Theorem 4.9 differs from that

of Theorem 4.5 in two respects. On one hand, the hypothesis of Theorem 4.9 is stronger because it

works with the coupling time of an identity coupling rather than with the mixing time in general.

On the other hand, the hypothesis in Theorem 4.9 is weaker because the time bounds are weaker.

The reason why a weaker time bound is sufficient for coupling time is that we can appeal to the

union bound Pr(Xt[Λ] 6= Yt[Λ]) ≤ ∑
v∈Λ Pr(Xt[v] 6= Yt[v]). We used this union bound twice,

first when we reduced the proof to bounding the probability of disagreement at a single site, and

second when we bounded the probability of the event A. Notice that the corresponding inequality

for the total variation distance is not necessarily true. Namely, we cannot in general assert that

‖Xt−Yt‖Λ ≤∑v∈Λ ‖Xt−Yt‖{v}. If this assertion were true then we could have done with assuming

a fast mixing time (rather than a fast coupling time) and working with the total variation distance

rather than with the probability of disagreement throughout the proof.

4.4.2 The general case

In this section we prove Theorem 4.3. Namely, we show that in general (without assuming

monotonicity), strong spatial mixing implies that the heat-bath block dynamics has optimal

temporal mixing if the blocks used are sufficiently large regular boxes. Using path cou-

pling [BD97], the proof is reduced to showing that strong spatial mixing implies a strong

version of the condition for uniqueness of the Gibbs measure given in Theorem 3.13. The

fact that strong spatial mixing implies this condition was already proved in [DS85b], but

we include a simple proof of it here.
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Proof of Theorem 4.3: Consider the heat-bath dynamics HB(L) on a region Ψ of volume n

with an arbitrary boundary configuration. Notice that L here is a large enough constant to

be chosen later, and will depend only on the dimension d and the constants in the definition

of strong spatial mixing. In particular, L is uniform in n and the boundary configuration.

Using Theorem 3.13 (i.e., the path-coupling method [BD97]), it is enough to give couplings

of the updates of the blocks, starting from two configurations σ, ξ that differ at a single site

on the boundary of the block (these couplings were denoted Ki(σ, ξ) in Chapter 3), and

show that supΨ maxy∈Ψ
{
IΨ
←y/L

d
}

< 1, where IΨ
←y is defined in Section 3.3.2, the metric

according to which IΨ
←y is defined is Hamming distance, and where we used the fact that

each site is included in exactly Ld blocks.

Recalling that IΨ
←y represents the total influence of y on all the blocks it is adjacent

to, and since there are 2dLd−1 such blocks, it is enough to give a coupling Ki(σ, ξ) of the

update of Θ = Θi∩Ψ such that the resulting average Hamming distance in Θ is < L
2d . (Recall

that Θi is a translation of a regular box of side length L.) Let u be the site at which σ and ξ

differ, r = 1
2( L

4d )
1
d , Θr = {v ∈ Θ |dist(v, u) ≤ r}, and Θr = Θ \ Θr. By the strong spatial

mixing assumption, ‖µσ
Θ − µξ

Θ‖Θr
≤ C|Θr| exp(−α · r) ≤ L−d for a large enough L. We can

thus couple the update of Θ such that the two coupled configurations disagree on Θr with

probability at most L−d. A trivial upper bound on the resulting average Hamming distance

in Θ in this coupling is then |Θr| + L−d|Θr| ≤ L
4d + 1.

Remark: It is not too difficult to see that the calculation in the proof also establishes the dual

condition based on total influence on a site that was given in Theorem 3.11.
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Chapter 5

Boundary-specific mixing on trees

In this chapter we consider spin systems on trees, and develop a new general framework

for proving optimal temporal mixing (i.e., O(m log n) mixing time) of the Glauber dynam-

ics in this setting. (In fact, the framework is for proving the stronger property of bounded

log-Sobolev constant.) The main technical ingredient is an implication stating that, if the

correlation (in the Gibbs distribution) between the spin at the root of the tree and the

configuration ` levels below goes to zero fast enough with ` (a form of spatial mixing condi-

tion), then csob is bounded. The main novelty of this implication is that it is sensitive to the

boundary condition, and thus opens up for the first time the possibility of proving fast mix-

ing times for specific boundary conditions in situations where the mixing time under other

boundary conditions is known to be significantly slower. We note that the converse of the

above implication holds as well, and we thus get a boundary-specific equivalence between

appropriate forms of mixing in time and in space for systems on trees.

Our framework is further enhanced by a second ingredient, which gives a simple

criterion for the above spatial mixing condition, and thus for bounded csob. This criterion

requires that the product of two natural quantities, which we call κ and γ, is at most 1
b ,

where b is the branching factor of the tree. The quantities κ and γ measure the rate at

which a spin disagreement at one site (in two copies of the system) can percolate down

and up the tree respectively. We are thus able to prove optimal temporal mixing in many

interesting scenarios for which this was not previously known by simply calculating the

values of κ and γ in these scenarios.

Our main motivating application is the Ising model on a regular tree with (+)-

boundary condition on the leaves, for which we show that csob remains bounded (and
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therefore the mixing time remains O(m log n)) at all temperatures and external fields. (The

mixing time on a tree is always polynomial in n, but with free boundary at low tempera-

tures and zero external field the exponent grows arbitrarily large as β → ∞.) We apply

our framework to other models as well, and obtain optimal temporal mixing over a signif-

icantly wider range of parameter values than previously known for independent sets (and,

more generally, for any two-spin system), colorings and the Potts model. This includes sit-

uations in which the mixing time is strongly dependent on the boundary condition, as well

as situations in which fast mixing holds for all boundary conditions.

The rest of this chapter is organized as follows. In Section 5.1 we set a motivating

context for our results by discussing the Ising model on trees and its properties as the

temperature, external field and boundary condition vary. Our general framework is laid out

in detail in Section 5.2. We then apply this framework in Section 5.3, where model-specific

calculations of κ and γ are carried out.

5.1 The Ising model and boundary conditions

5.1.1 The Ising model on the integer lattice

Before giving the details of the Ising model on a regular tree, it is helpful to recall the high-

level picture of the Ising model on Z
2 as a reference point. As was already discussed in

Chapter 4, for the Ising model on Z
2 with no external field it is well known that a phase

transition occurs at a certain known critical inverse temperature β = βc: for β < βc (the

“high temperature” region) there are no long-range correlations between spins and con-

sequently there is a unique Gibbs measure independent of the boundary condition, while

for β > βc (the “low temperature” region) correlations are present at arbitrary distances

and there are two distinct Gibbs measures (or “phases”), corresponding to the (+)- and

(−)-boundary conditions respectively. In fact, for β < βc strong spatial mixing holds, and

therefore optimal temporal mixing holds uniformly in the boundary condition (see Chap-

ter 4 for details), while for β > βc it is known that for the free boundary condition the

mixing time of the Glauber dynamics on a square of volume n is exp(Ω(
√

n )) [CGMS96].

One of the most interesting questions left open by the above results is the influence

of the boundary condition on the mixing time. The following has been conjectured [BM02,

FH87]:
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Conjecture 5.1 In the presence of an all-(+) boundary, the mixing time in Z
2 (and in fact

in Z
d for all d) should remain polynomial in n at all temperatures.

This captures the intuition that the only obstacle to rapid mixing for β > βc is the long

time required for the dynamics to get through the “bottleneck” between the (+)-phase and

the (−)-phase; the presence of the (+)-boundary eliminates the (−)-phase and hence the

bottleneck. Formalizing this intuition, however, has proved very elusive.

5.1.2 The Ising model on trees

As already mentioned, the main application of the framework developed in this chapter is a

proof of a strong version of Conjecture 5.1, when the lattice Z
d is replaced by a regular tree.

(In statistical physics, the tree is referred to as the “Bethe approximation” of the lattice).

Specifically, we analyze the mixing time of the Glauber dynamics for the Ising model on

a tree with (+)-boundary condition on its leaves, and show that it remains O(m log n)

at all temperatures and external fields. (This contrasts sharply with the fact that with a

free boundary, the mixing time at low temperatures (as β → ∞) with no external field is

mnΩ(β) [KMP01].) This is apparently the first result that quantifies the effect of boundary

conditions on the dynamics in an interesting scenario. We stress that, while the tree is

simpler in some respects than Z
d due to the lack of cycles, in other respects it is more

complex: e.g., it exhibits a “double phase transition” (see below). Moreover, the Ising model

on trees has recently received a lot of attention as the canonical example of a statistical

physics model on a “non-amenable” graph (i.e., one whose boundary is of comparable size

to its volume) — see, e.g., [KMP01, BRSSZ01, BRZ95, EKPS00, Iof96a, JS99, Lyo00, ST98].

To better appreciate our results for the Ising model on regular trees, we now give

a detailed overview of known facts about this model, regarding both the Gibbs state and

the Glauber dynamics. Fix b ≥ 2 and let T
b denote the infinite b-ary tree (in which every

vertex has b children)1. Consider for now the Ising model with no external field on T
b. This

model is known to have two critical inverse temperatures, β0 and β1. The first of these,

β0 = 1
2 ln( b+1

b−1), marks the dividing line between uniqueness and non-uniqueness of the

Gibbs measure: i.e., the “high temperature” region, in which the Gibbs measure is unique,

is defined by β ≤ β0 [Pre74]. However, in contrast to the model on Z
d, there is now a

1 In the Bethe lattice mentioned above all vertices (including the root) have degree b + 1; for convenience

we define T
b such that the root has degree b, and notice that all our results below apply equally well to the

setting in which the root has b + 1 children.
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second critical point β1 = 1
2 ln(

√
b+1√
b−1

) [BRZ95, Iof96a], which delimits the region where

“typical” boundary conditions exert long-range influence on the root. I.e., there is now an

“intermediate” region β0 < β ≤ β1 in which the (+)- and (−)-boundaries exert long-range

influence but typical boundaries do not, while in the “low temperature” region β > β1

long-range influence occurs even for typical boundaries. β1 has alternative interpretations

as the critical value for extremality of the Gibbs measure and the threshold for noisy data

transmission on the tree [EKPS00].

The Glauber dynamics for the Ising model on trees has also been studied. In a

recent paper [KMP01], it is shown that the mixing time with free boundary on a complete

b-ary tree with n vertices is O(m log n) at high and intermediate temperatures (i.e., when

β < β1)2. Moreover, as soon as β > β1 the mixing time becomes mnΩ(β), so that the

exponent is unbounded as β → ∞. Thus the critical point β = β1 is reflected in a jump in

the (scaled) mixing time from logarithmic to polynomial in n. We note that a closer look at

the fast mixing result for high and intermediate temperatures in [KMP01] reveals that it in

fact holds for all boundary conditions.

Now, when one considers the effect of boundary conditions, trees differ greatly

from Z
d because their boundary is very large (of size Θ(n) rather than Θ(n1/d) as in Z

d).

However, this can be compensated for by introducing a non-zero external field h (which

adds a bias to each internal spin in the direction of the field). It is well known [Geo88]

that, for all β > β0, there is a critical value h = hc(β) > 0 of the field such that the Gibbs

measure is not unique when |h| ≤ hc, and is unique when |h| > hc (see Fig. 5.1). (When

β ≤ β0 the Gibbs measure is unique for all h, and hc is defined to be zero.) Thus in the

presence of a (+)-boundary, the tree with an external field of value h = −hc is the analog

of the classical case of Z
d with zero field. (Notice that on Z

d the critical value hc is always

zero because the size of the boundary of a box is much smaller than its volume, and hence

a non-zero external field overcomes the influence of any boundary condition).

Our result for the (+)-boundary condition (Theorem 5.2 below) applies to the full

range of values of both β and h. The fact that we are able to handle external fields, and

specifically the critical value |h| = hc, brings our results for trees rather close to Conjec-

ture 5.1 for Z
d.

We conclude this section with the detailed results proven in this chapter for the

2Actually [KMP01] proves this only for sufficiently high temperatures, but the argument can be extended to

all β < β1 [PW02].
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T = 

1/β0

1/β1

1/β

h
b−1−(b−1)

Figure 5.1: Curve of critical field hc(β). The Gibbs measure is unique above the curve.

Ising model on T
b.

Theorem 5.2 For any fixed b, the Glauber dynamics on the n-vertex b-ary tree with (+)-

boundary condition has bounded csob, and therefore O(m log n) mixing time, at all inverse

temperatures β < ∞ and all external fields h.

In our second result for the Ising model, we obtain improved and more general bounds on

the mixing time in cases where it is insensitive to the boundary condition, i.e., in the high

and intermediate temperature region at all fields, and at all temperatures when there is a

large external field:

Theorem 5.3 For any fixed b, the Glauber dynamics on the n-vertex b-ary tree with arbitrary

boundary conditions has bounded csob, and therefore O(m log n) mixing time, both (i) at all

inverse temperatures β < β1 and all external fields h; and (ii) at all inverse temperatures β <

∞ and all external fields |h| > hc(β).

This result has a several advantages over previous ones [KMP01, PW02]: it applies also

when there is an external field; it gives the stronger result of bounded csob (rather than just

O(m log n) mixing time); and the proof goes through directly for all boundary conditions.

Finally, we note that the results in Theorems 5.2 and 5.3 establish examples where

csob is bounded (and therefore optimal temporal mixing holds), but optimal projected tem-

poral mixing does not hold. In Chapter 4 we saw (Theorem 4.6) that if optimal projected

temporal mixing holds, even for a single boundary condition, then weak spatial mixing

holds and therefore the Gibbs measure is unique. Observe that the results in Theorems 5.2
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and 5.3 include regimes of parameters for which there are multiple Gibbs measures, and

thus for these regimes optimal projected temporal mixing does not hold even though csob is

bounded.

5.2 A general framework for optimal temporal mixing

In this section we present a simple criterion for bounded csob that applies to any permissive

spin system on a regular tree. We also give a similar criterion for bounded cgap. Although

bounded csob implies bounded cgap, we carry out the analysis for both because, on the one

hand, most of the analysis is identical and allows for a unified treatment, while on the other

hand, in those places where the analysis differs, the arguments for cgap are more intuitive

and help in understanding the corresponding arguments for csob. The main argument un-

derlying the two criteria is an equivalence between two natural forms of mixing in space

and bounded cgap and csob respectively.

We now set up some definitions in order to state our criteria. Throughout this

chapter, we consider the case in which the Glauber dynamics is run on a complete finite

subtree T of T
b, rooted at the root of T

b; if T has depth k then it has n = (bk+1 − 1)/(b − 1)

vertices, and its boundary ∂T consists of the children (in T
b) of its leaves, i.e., |∂T | =

bk+1. Since the dynamics is always Glauber, we write cgap(µη
T ) and csob(µ

η
T ) for cgap(P ) and

csob(P ) respectively, where P is the Markov kernel of the Glauber dynamics for µη
T . Also,

when we say that cgap is bounded for a boundary condition η, we mean that there exists

α > 0 such that cgap(µη
T ) > α for all complete subtrees T . (This differs slightly from the

corresponding definition in Section 2.3.2, where the quantification is over all subsets.) A

similar remark applies to bounded csob and to optimal temporal mixing.

The key ingredients in our criteria for bounded cgap and csob are two quantities,

which we call κ and γ, that bound the rate of percolation of disagreements down and up the

tree respectively. Both are properties of the collection of Gibbs distributions
{
µη

T

}
, where

the boundary condition η is fixed and T ranges over all finite (complete) subtrees of T
b.

To define κ and γ we need a little notation. For a configuration τ ∈ Ωη
T , let τx,s denote

the configuration τ with the spin at x set to s. For a site x ∈ T , write Tx for the maximal

subtree of T rooted at x. When x is not the root of T , let µs
Tx

≡ µτz,s

Tx
denote the Gibbs

distribution in which the parent z of x has its spin fixed to s. Notice that the configuration

on the bottom boundary of Tx is in fact specified by η because τ ∈ Ωη
T . Indeed, µs

Tx
depends
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on τ only in that the latter specifies the (fixed) configuration on T \ (Tx ∪ {z}) in µs
Tx

, since

the distribution inside Tx is independent of τ once the spin at z is fixed.

Definition 5.4 For a collection of Gibbs distributions
{
µη

T

}
as above, define κ ≡ κ(

{
µη

T

}
) and

γ ≡ γ(
{
µη

T

}
) by

(i) κ = supT maxz,s1,s2 ‖µs1
Tz

− µs2
Tz
‖z;

(ii) γ = supT max ‖µτy,s1

A − µτy,s2

A ‖z, where the maximum is taken over all subsets A ⊂ T ,

all boundary configurations τ , all sites y ∈ ∂A, all neighbors z ∈ A of y, and all spins

s1, s2 ∈ S.

Remark: Note that κ is the same as γ, except that the maximization is restricted to A = Tz and the

boundary vertex y being the parent of z; hence always κ ≤ γ. Since κ involves Gibbs distributions

only on maximal subtrees Tz, it may depend on the boundary condition η at the bottom of the

tree. By contrast, γ bounds the worst-case probability of disagreement for an arbitrary subset A and

arbitrary boundary configuration around A, and hence depends only on the potentials of the system

and not on η. It is the dependence of κ on η that opens up the possibility of an analysis that is specific

to the boundary condition. For example, for the Ising model at very low temperature and with no

external field κ is close to 1 in the free boundary case, while it is close to zero in the (+)-boundary

case.

The intuition for these definitions comes from the following claim, which relates

κ and γ to the rate of disagreement percolation in the tree. For any T and site x ∈ T , write

T̃x for Tx \ {x}, the subtree Tx excluding its root, and µs
T̃x

≡ µτx,s

T̃x
for the Gibbs distribution

when the spin at x is fixed to s. Also, for ` ≤ height(x) + 1, write Bx,` for the subtree (or

“block”) of height `− 1 rooted at x (i.e., Bx,` has ` levels). For two configurations σ, σ ′ ∈ Ω,

let |σ − σ′|x,` denote the number of sites ` levels below x (i.e., on the bottom boundary

of Bx,`) at which σ and σ′ differ. Note that |σ − σ′| ≤ b`.

Claim 5.5 For every x ∈ T and all ` ≤ height(x) + 1 the following hold:

(i) For all s1, s2, there is a coupling ν = νs1,s2
x of µs1

T̃x
and µs2

T̃x
for which Eν |σ−σ′|x,` ≤ (κb)`,

where (σ, σ′) is a random pair of configurations chosen from the coupling ν.

(ii) For any τ, τ ′ ∈ Ω that have the same spin value at the parent of x, ‖µτ
Bx,`

− µτ ′
Bx,`

‖x ≤
γ` · |τ − τ ′|x,`.
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The proof of this claim follows from a standard recursive coupling along paths in the tree

and is given in Section 5.2.4. Part (i) shows that κ bounds the probability of a disagreement

percolating down the tree: i.e., when we fix a disagreement at x and recursively couple the

distributions on the children of x, the expected proportion of disagreements after ` levels is

at most κ`. Similarly, from part (ii) we see that γ bounds the probability of a disagreement

percolating up the tree: i.e., when we fix a single disagreement at level ` below x, the

probability of this disagreement reaching x is at most γ `.

We now state our main theorem that gives criteria for bounded cgap and csob in

terms of the quantities κ and γ.

Theorem 5.6 Consider an arbitrary (permissive) spin system and a boundary condition η (a

configuration on T
b). For κ ≡ κ(

{
µη

T

}
) and γ ≡ γ(

{
µη

T

}
) the following hold:

(i) If γκb < 1 then cgap is bounded for η.

(ii) If max {γκb, γ} < 1 then csob is bounded for η.

The proof of Theorem 5.6, which is the content of the rest of this section, has two

main parts. In the first, we define two natural forms of mixing in space involving variance

and entropy respectively, and show that they imply (and are in fact equivalent to) bounded

cgap and bounded csob respectively. In this part, the arguments are almost identical for

both quantities, and we carry out a unified analysis. In the second part of the proof, we

use Claim 5.5 to show that the two forms of mixing in space hold when conditions (i)

and (ii) respectively of Theorem 5.6 hold, thus concluding the proof of this theorem. In this

part of the proof the analysis is carried out first for the spectral gap, where the arguments

are much simpler, and then for the more involved log-Sobolev constant. At the end of

the section we also show that Theorem 5.6 continues to hold when κ and γ are replaced

by slightly modified (relaxed) versions of the two quantities. The relaxed version of the

theorem is motivated by some of the applications we discuss in Section 5.3. Finally, we

note that in the course of this section we occasionally cite specialized versions of theorems

given in Appendix A, where various inequalities for variance and entropy are collected. For

proofs of these theorems, the reader is referred to the general versions in Appendix A.
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5.2.1 Relating mixing in time to mixing in space

In this section we show that two spatial mixing conditions are equivalent to bounded cgap

and bounded csob respectively. Our analysis has two main advantages over those used pre-

viously: first, the conditions for the spectral gap and the log-Sobolev constant are identical

in form, allowing a uniform treatment; second, and more importantly, the conditions are

measure-specific, i.e., they may hold for the Gibbs distribution induced by some specific

boundary configuration while not holding for other boundary configurations. Hence, the

conditions are sensitive enough to show rapid mixing for specific boundaries even though

the mixing time with other boundaries is slow for the same choice of system potentials.

Reduction to block analysis

Before presenting the main result of this section, we need some more definitions and back-

ground. Recall that for a site x ∈ T , Bx,` ⊆ T denotes the intersection with T of the

subtree (or “block”) of height ` − 1 rooted at x, i.e., Bx,` consists of ` levels. (Here we also

consider the case in which x is k < ` levels from the bottom of T , where Bx,` has only

k levels.) In what follows we will think of ` as a suitably large constant. By analogy with

expression (2.5) for the Dirichlet form, let D`(f) ≡ ∑
x∈T µη

T [VarBx,`
(f)] denote the local

variation of f w.r.t. the blocks {Bx,`}. A straightforward manipulation (see, e.g., [Mar98],

keeping in mind that each site belongs to at most ` blocks) shows that cgap can be bounded

as follows:

cgap(µη
T ) ≥ 1

`
· inf

f

D`(f)

Varη
T (f)

· min
τ,x

cgap(µτ
Bx,`

). (5.1)

As before, the infimum is taken over non-constant functions (and henceforth we omit ex-

plicit mention of this). The importance of (5.1) is that minτ,x cgap(µτ
Bx,`

) depends only on

the size of Bx,` and the potentials of the system, but not on the size of T ; in fact, it is at

least Ω(e−c`), where the constant c depends on the potentials [KMP01]. Therefore, in order

to show that cgap is bounded by a constant independent of the size of T , it is enough to

show that, for some finite `, Varη
T (f) ≤ const × D`(f) for all functions f . This is what we

will show below, under the relevant spatial mixing condition. As a side remark, notice that

D` is simply the Dirichlet form of the heat-bath dynamics based on the blocks Bx,`, and

hence inff
D`(f)

Varη
T (f)

is exactly the (scaled) spectral gap of this dynamics.

An identical manipulation yields an analogous bound for the log-Sobolev constant.
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For a non-negative function f , let E`(f) ≡∑x∈T µη
T [EntBx,`

(f)]. Then

csob(µη
T ) ≥ 1

`
· inf

f≥0

E`(f)

EntηT (f)
· min

τ,x
csob(µ

τ
Bx,`

). (5.2)

Hence to bound csob(µη
T ) it suffices to show that, for some constant `, Entη

T (f) ≤ const ×
E`(f) for all f ≥ 0.

Some basic properties of variance and entropy

We record here some basic properties of variance and entropy that are repeatedly used in

the proofs below:

(i) For B ⊆ A ⊆ T ,

Varτ
A(f) = µτ

A[VarB(f)] + Varτ
A[µB(f)]. (5.3)

This equation expresses a decomposition of variance into the local conditional variance in B

and the variance of the projection outside B.

(ii) If A =
⋃

i Ai for disjoint Ai, and the Gibbs distribution µτ
A is the product of its marginals

over the Ai, then for any function f ,

Varτ
A(f) ≤

∑

i

µτ
A[VarAi(f)]. (5.4)

(iii) For any two subsets A,B ⊆ T such that (∂A) ∩ B = ∅, and for any function f ,

µη
T [VarA(µB(f))] ≤ µη

T [VarA(µA∩B(f))]. (5.5)

All three properties (i), (ii) and (iii) also hold with Var replaced by Ent. The proofs of prop-

erties (i) and (iii) are given (for completeness) in Section A.1 in the Appendix. Property (ii)

is well known and also follows from our discussion of the decomposition of variance and

entropy given in Sections A.2 and A.3 respectively.

Mixing in space

We are now ready to state our spatial mixing conditions, first for the variance and then for

the entropy. Recall that Tx is the maximal subtree rooted at x, and that T̃x ≡ Tx \ {x} is the

subtree Tx excluding its root.
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Definition 5.7 [Variance Mixing] We say that µη
T satisfies VM(`, ε) if for every x ∈ T ,

any τ ∈ Ωη
T and any function f that does not depend on Bx,` ,

Varτ
Tx

[µ
T̃x

(f)] ≤ ε · Varτ
Tx

(f).

Let us briefly discuss the above condition. Essentially, ε = ε(`) gives the rate of de-

cay with distance ` of point-to-set correlations. To see this, note that the l.h.s. Varτ
Tx

[µ
T̃x

(f)]

is the variance of the projection of f onto the root x of Tx, which is at distance ` from the

sites on which f depends. It is also worth noting that the required uniformity in τ in VM

is not very restrictive: since the distribution µτ
Tx

depends only on the restriction of τ to

the boundary of Tx, and since τ ∈ Ωη
T (i.e., τ agrees with η on ∂T and therefore on the

bottom boundary of Tx), the only freedom left in choosing τ is in choosing the spin of the

parent of x. Thus, VM is essentially a property of the distribution induced by the bound-

ary condition η. It is this lack of uniformity (i.e., the fact that we need not verify VM for

other boundary conditions) that makes it flexible enough for our applications. Notice also

that this means that VM with ε exponentially small in ` roughly corresponds to exponential

decay of correlations as in Definition 2.5. (The correspondence is not exact because VM —

when translated into the terminology of Definition 2.5 — only considers the case in which

one of the functions depends on the spin at a single site.)

As the following theorem states, if VM(`, ε) holds with ε ≈ 1
2` , then we get a lower

bound on cgap.

Theorem 5.8 For any ` and δ > 0, if µη
T satisfies VM(`, (1− δ)/2(`+1− δ)) then Varη

T (f) ≤
3
δ · D`(f) for all f . In particular, if VM with the above parameters holds for some fixed ` and

δ > 0, for all µη
T with η fixed and T an arbitrary full subtree, then cgap is bounded for η.

Conversely, if cgap is bounded for η then for some constants c, ϑ > 0 and all T , µη
T satisfies

VM(`, ce−ϑ`) for all `.

Notice that in VM(`, ε(`)), ε(`) expresses the rate of decay of variance in space and thus

Theorem 5.8 establishes a correspondence between the rate of decay of variance in space

and that in time (i.e., cgap). In particular, this yields an equivalence between certain notions

(based on variance) of spatial and temporal mixing, as discussed in a more general setting

in Chapter 2. Note crucially that the equivalence is specific to the boundary condition η.

Remark: The (easier) second part of the theorem was already proved in [KMP01], where it was

shown that, for general nearest-neighbor spin systems on any bounded degree graph, if cgap(µη
T )
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is bounded independently of the volume n of T then µη
T exhibits exponential decay of correlations

(i.e., VM(`, e−Θ(`)) holds for all `). The authors of [KMP01] posed the question of whether the

converse is also true. Theorem 5.8 answers this question affirmatively when the graph is a tree. In

fact, as is apparent from the above theorem, the decay of correlations on a tree is either slower than

linear or exponentially fast.

The analogous mixing condition for entropy and the log-Sobolev constant is the

following:

Definition 5.9 [Entropy Mixing] We say that µη
T satisfies EM(`, ε) if for every x ∈ T ,

any τ ∈ Ωη
T and any non-negative function f that does not depend on Bx,` ,

Entτ
Tx

[µ
T̃x

(f)] ≤ ε · Entτ
Tx

(f).

Before stating the analog of Theorem 5.8 relating csob to EM, we need to define

one more constant. Let pmin = minx,τ,s

{
p = µτ

Tx
(σx = s) : p > 0

}
, i.e., pmin is the minimum

non-zero probability of any spin value at any site x ∈ T with any boundary condition at the

parent of x. It is easy to see that pmin is bounded below by a constant that depends only on

b and the potentials of system.

Theorem 5.10 For any ` and δ > 0, if µη
T satisfies EM(`, [(1 − δ)pmin/(` + 1 − δ)]2) then

EntηT (f) ≤ 2
δ · E`(f) for all f ≥ 0. In particular, if EM with the above parameters holds for

some fixed ` and δ > 0, for all µη
T with η fixed and T an arbitrary full subtree, then csob is

bounded for η. Conversely, if csob is bounded for η then for some constants c, ϑ > 0 and all T ,

µη
T satisfies EM(`, ce−ϑ`) for all `.

Again, this theorem establishes a correspondence between the rates of decay of entropy

in space and in time. We also notice that weak spatial mixing as in Definition 2.3 im-

plies EM(`, ce−Θ(`)) (and also VM(`, ce−Θ(`))) for all boundary conditions. (This easily

follows from the discussion in Appendix A.) Thus, on a tree, weak spatial mixing implies

bounded csob (and thus optimal temporal mixing) uniformly in the boundary condition.

The latter implication is similar to the one discussed in Chapter 4 for systems on the integer

lattice, where optimal temporal mixing uniformly in the boundary condition follows from

strong spatial mixing. (In contrast to trees, on the integer lattice the latter condition is

necessary for optimal temporal mixing.)

We turn now to the proofs of Theorems 5.8 and 5.10. For this purpose, it is con-

venient to work with spatial mixing conditions that are somewhat more involved than VM
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and EM. The main difference is that we want to allow for functions that may depend

on Bx,` (the first ` levels of Tx) and thus need to introduce a term for this dependency. The

modified conditions express the property that the variance (entropy) of the projection of

any function f onto the root x of Tx can be bounded up to a constant factor by the local

variance (entropy) of f in Bx,`, plus a negligible factor times the local variance (entropy)

of f in T̃x. In Appendix A we show that the modified conditions (with appropriate parame-

ters) can be deduced from VM and EM respectively. Specializing those results to the setting

here gives:

Lemma 5.11 The following two implications hold:

(i) For any ε < 1
2 , if µη

T satisfies VM(`, ε) then for every x ∈ T , any τ ∈ Ωη
T and any func-

tion f we have Varτ
Tx

[µ
T̃x

(f)] ≤ 2−ε′

1−ε′ ·µτ
Tx

[VarBx,`
(f)]+ ε′

1−ε′ ·µτ
Tx

[Var
T̃x

(f)], with ε′ = 2ε.

(ii) For any ε < p2
min, if µη

T satisfies EM(`, ε) then for every x ∈ T , any τ ∈ Ωη
T and any

function f ≥ 0 we have Entτ
Tx

[µ
T̃x

(f)] ≤ 1
1−ε′ · µτ

Tx
[EntBx,`

(f)] + ε′

1−ε′ · µτ
Tx

[Ent
T̃x

(f)],

with ε′ =
√

ε
pmin

.

The two implications are special cases of Theorems A.5 and A.8 respectively. For implica-

tion (ii), notice that Theorem A.8 gives a bound on Entτ
Tx

(f), and we replaced the latter

with Entτ
Tx

[µ
T̃x

(f)] + µτ
Tx

[Ent
T̃x

(f)], since this sum equals Entτ
Tx

(f) by the entropy version

of (5.3). We refer to Appendix A for the general theorems and their proofs.

Remark: We note that, with some extra work, part (ii) of Lemma 5.11 (i.e., Theorem A.8) can be

improved to hold with ε′ = cε, where c is a constant that depends only on pmin. We content ourselves

with the weaker bound because it is simpler to prove while still enough for our applications.

We can now prove Theorems 5.8 and 5.10 by working with the modified spatial

mixing conditions of Lemma 5.11.

Proof of Theorems 5.8 and 5.10: Here we only prove the forward direction of both theo-

rems. The reverse direction of Theorem 5.8 was proved in [KMP01] (for general graphs), as

already mentioned above. The reverse direction of Theorem 5.10 is deferred to Appendix B,

where it is also proved for general graphs. The reason for this is that the proof uses ma-

chinery developed in Appendix A, and that the reverse direction is not needed for the rest

of the development in this chapter.

The main step in the proof of the forward direction is to show the following claim:
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Claim 5.12 If for every x ∈ T , any τ ∈ Ωη
T and any function f we have

Varτ
Tx

[µ
T̃x

(f)] ≤ c · µτ
Tx

[VarBx,`
(f)] +

(
1 − δ

`

)
· µτ

Tx
[Var

T̃x
(f)],

then Var(f) ≤ c
δ · D`(f) for all f . The same implication holds when Var is replaced by Ent, D`

is replaced by E` and the function f is restricted to be non-negative.

Observe that the hypothesis of Theorem 5.8 together with part (i) of Lemma 5.11

establishes the hypothesis of Claim 5.12 with c ≤ 3, and similarly, the hypothesis of The-

orem 5.10 together with part (ii) of Lemma 5.11 establishes the hypothesis of Claim 5.12

(after the necessary replacement of symbols) with c ≤ 2.

It therefore suffices to prove Claim 5.12. We prove only the formulation with Var

and D` since the proof for the formulation with Ent and E` is identical once we make the

same replacements in the text of the proof. As will be clear below, the proof uses only

properties (5.3), (5.4) and (5.5), which are common to both Var and Ent.

Consider an arbitrary function f : Ω → R. Our first goal is to relate Varη
T (f) to the

projections Varτ
Tx

[µ
T̃x

(f)] for x ∈ T , so that we can apply the spatial mixing condition of

the hypothesis. Recall that T has k + 1 levels, and define the increasing sequence ∅ = F0 ⊂
F1 ⊂ . . . ⊂ Fk+1 = T , where Fi consists of all sites in the lowest i levels of T . Thus Fi is a

forest of height i − 1. Using (5.3) recursively, and the facts that µFi+1(µFi(f)) = µFi+1(f)

and µF0(f) = f , we obtain

Varη
T (f) = µη

T [VarF1(f)] + Varη
T [µF1(f)]

= µη
T [VarF1(f)] + µη

T [VarF2(µF1(f))] + Varη
T [µF2(µF1(f))]

...

=

k+1∑

i=1

µη
T [VarFi(µFi−1(f))].

Now a fundamental property of nearest-neighbor interaction models on a tree is that, given

the configuration on T \Fi, the Gibbs distribution on Fi becomes a product of the marginals

on the subtrees rooted at the sites x ∈ Fi \ Fi−1. Using inequality (5.4) for the variance of

a product measure, we therefore have that

Varη
T (f) ≤

k+1∑

i=1

∑

x∈Fi\Fi−1

µη
T [VarTx(µFi−1(f))] ≤

∑

x∈T

µη
T [VarTx(µ

T̃x
(f))], (5.6)

where in the second inequality we used the convexity of the variance as in (5.5).
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Notice that so far we have not used the spatial mixing condition in the hypothesis

of Claim 5.12, but only a natural martingale structure induced by the tree. Let us denote the

final sum in (5.6) by Pvarη
T (f). In order to bound cgap, we need to compare the projection

terms VarTx(µ
T̃x

(f)) in Pvarη
T (f) with the local conditional variance terms in D`(f). For

example, notice that if µη
T were the product of its single-site marginals then VarTx(µ

T̃x
(f)) ≤

µTx [Varx(f)] and cgap = 1. However, in general the variance of the projection on x may

also involve terms which depend on other sites, and may lead to a factor that grows with

the size of Tx. We will use the spatial mixing condition in order to preclude the latter

possibility. Specifically, we show that if for every x ∈ T , any τ ∈ Ωη
T and any function g,

Varτ
Tx

[µ
T̃x

(g)] ≤ c · µτ
Tx

[VarBx,`
(g)] + ε · µτ

Tx
[Var

T̃x
(g)] then for every x ∈ T and τ ∈ Ω,

Varτ
Tx

[µ
T̃x

(f)] ≤ c · µτ
Tx

[VarBx(f)] + ε ·
∑

y∈Bx∪∂̃Bx,y 6=x

µτ
Tx

[VarTy(µ
T̃y

(f))], (5.7)

where we have abbreviated Bx,` to Bx and ∂̃Bx stands for the boundary of Bx excluding the

parent of x, i.e., the bottom boundary of Bx. Notice that the last term in (5.7) is relevant

only when x is at distance at least ` from the bottom of T . When x belongs to one of the `

lowest levels of T then Tx = Bx, and thus trivially Varτ
Tx

[µ
T̃x

(f)] ≤ µτ
Tx

[VarBx(f)].

Let us assume (5.7) for now and conclude the proof of the theorem. Applying (5.7)

for every x and τ , and using the hypothesis that ε = 1−δ
` and the fact that each site appears

in at most ` blocks, we get

Pvarη
T (f) ≤ c · D`(f) + ε ·

∑

x∈T

∑

y∈Bx∪∂̃Bx,y 6=x

µη
T [VarTy(µ

T̃y
(f))]

≤ c · D`(f) + ε` ·
∑

y∈T

µη
T [VarTy(µ

T̃y
(f))]

= c · D`(f) + (1 − δ)Pvarη
T (f),

and hence

Varη
T (f) ≤ Pvarη

T (f) ≤ c

δ
· D`(f),

proving Claim 5.12. We now return to proving (5.7).

Let g = µ
Tx\(Bx∪∂̃Bx)

(f). Once we notice that µ
T̃x

(f) = µ
T̃x

(g), we can use the

spatial mixing assumption that precedes (5.7) to deduce

Varτ
Tx

[µ
T̃x

(f)] ≤ c · µτ
Tx

[VarBx(g)] + ε · µτ
Tx

[Var
T̃x

(g)]

≤ c · µτ
Tx

[VarBx(f)] + ε · µτ
Tx

[Var
T̃x

(g)],
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where we used (5.5) for the second inequality. We will be done once we show that

µτ
Tx

[Var
T̃x

(g)] ≤
∑

y∈Bx∪∂̃Bx,y 6=x

µτ
Tx

[VarTy(µT̃y
(f))]. (5.8)

But (5.8) follows from a similar argument to that used earlier to show Varη
T (f) ≤ Pvarη

T (f),

starting from the fact that g = µF ′d
(f), where the forests F ′i are defined analogously to the Fi

earlier but restricted to the subtree Tx, and d = height(x) − `. We omit the details.

This concludes the proof of Claim 5.12, and thus of Theorems 5.8 and 5.10.

5.2.2 Establishing VM through disagreement percolation

We now move on to the second part of our framework, where we show that the conditions

on κ and γ in parts (i) and (ii) of Theorem 5.6 imply the Variance Mixing condition VM and

the Entropy Mixing condition EM respectively, with ε exponentially small in `. The analysis

is carried out separately for each of the two cases, and we first give the analysis for part (i)

and VM. The main result in this section reads as follows.

Theorem 5.13 Any Gibbs distribution µη
T satisfies VM(`, p−1

min(γκb)`) for all `, where κ and γ

are the constants associated with the sequence
{
µη

T

}
as specified in Definition 5.4. In par-

ticular, if γκb < 1 then there exists a constant ϑ > 0 such that, for every T , µη
T satisfies

VM(`, p−1
mine

−ϑ`) for all `.

Notice that part (i) of Theorem 5.6 follows by combining Theorems 5.13 and 5.8. Specifi-

cally, Theorem 5.8 tells us that in order to obtain bounded cgap, it is enough to establish the

Variance Mixing condition VM(`, ε) with ε = (1−δ)/2(`+1−δ), for some constants `, δ > 0

independent of the size of T . However, using Theorem 5.13, the hypothesis in part (i) of

Theorem 5.6 implies that VM with the above parameters indeed holds for large enough `

and some δ > 0. We conclude that the same hypothesis implies bounded cgap, as required.

Remarks:

• The factor p−1
min in Theorem 5.13 can be improved to q − 1, where q = |S| is the size of the

spin space S, but the constant p−1
min is good enough for our purposes here, and the proof for

this factor is simpler.

• The validity of VM, i.e, the decay of point-to-set correlations, is of interest independently

of its implication for the spectral gap (an implication which is new here): e.g., it is closely
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related to the purity of the infinite volume Gibbs measure and to bit reconstruction problems

on trees [EKPS00]. Compared to other arguments for establishing VM that are based on

disagreement percolation, the novelty of our argument is that it considers the product of κ

and γ, rather than working with κ alone.

Proof of Theorem 5.13: The proof of the theorem is based on the disagreement perco-

lation argument expressed in Claim 5.5. (Recall that the proof of this claim is given in

Section 5.2.4.) To understand the role the claim plays in the proof here, fix T , x ∈ T and

τ ∈ Ωη
T , and recall that µs

T̃x
≡ µτx,s

T̃x
is the Gibbs distribution in which the spin at x is fixed

to s. Now, let µs
` ≡ µs

T̃x
(µBx,`

) stand for the distribution described by the following two-

stage procedure: first, choose a configuration σ from µs
T̃x

(i.e., conditioned on s being the

spin at the root x); then, choose a new configuration according to µσ
Bx,`

(i.e., the configu-

ration σ chosen in the first step specifies the boundary condition at the bottom of Bx,` in

the second step). Let d(`) = maxs1,s2 ‖µs1
` − µs2

` ‖x. Thus d(`) is an upper bound on the

influence of the initial spin at x on the resulting spin at x in the above procedure. We now

use Claim 5.5 to show that d(`) ≤ (γκb)`. Specifically, for all s1 and s1,

‖µs1
` − µs2

` ‖x = ‖µs1

T̃x
(µBx,`

) − µs2

T̃x
(µBx,`

)‖x

≤
∑

σ,σ′

ν(σ, σ′)‖µσ
Bx,`

− µσ′

Bx,`
‖x

≤
∑

σ,σ′

ν(σ, σ′)|σ − σ′|x,` · γ`

= γ` · Eν |σ − σ′|x,`

≤ (γκb)`,

where ν = νs1,s2
x is the coupling of µs1

T̃x
and µs2

T̃x
from part (i) of Claim 5.5, and in the third

line we used part (ii) of that claim.

The importance of d(`) is that it is closely related to the rate of the Variance Mix-

ing VM. Recall that in order to establish VM(`, ε), we need to show that for every function f

that does not depend on Bx,`,

Varτ
Tx

[µ
T̃x

(f)] ≤ ε · Varτ
Tx

(f). (5.9)

As we show below, (5.9) holds with ε = d(`)/pmin for every function f that does not depend

on Bx,`. Since d(`) ≤ (γκb)`, this will complete the proof of Theorem 5.13.



102

Now, note that (5.9) means that projecting f onto the root (of Tx) decreases the

variance by a factor ε. As is well known, in order to establish this it is enough to prove

a dual contraction, i.e., to consider an arbitrary function that depends only on the spin at

the root and show that, when projecting onto levels ` and below, the variance shrinks by

a factor ε. Formally, it is enough to show that for every function g that does not depend

on T̃x
3 we have

Varτ
Tx

[µBx,`
(g)] ≤ ε · Varτ

Tx
(g). (5.10)

To see that (5.10) implies (5.9), we refer (for completeness) to Eqn. (A.7) in Appendix A.

We now complete the proof by showing that (5.10) holds with ε = d(`)/pmin.

Consider an arbitrary g that does not depend on T̃x. Let p(s) ≡ µτ
Tx

(σx = s). We also

write gs for g(σ), where σ is any configuration that agrees with τ outside Tx and such

that σx = s. (This is well defined since g does not depend on T̃x). Also, let gmax =

maxs {gs : p(s) > 0} stand for the maximum value of g, and define gmin similarly. Then,

Varτ
Tx

[µBx,`
(g)] = Covτ

Tx
[g, µBx,`

(g)]

= Covτ
Tx

[g, µ
T̃x

(µBx,`
(g))]

= Covτ
Tx

[g, µ`(g)]

=
∑

s∈S
p(s)

[
gs − µτ

Tx
(g)
] [

µs
`(g) − µτ

Tx
(µ`(g))

]

≤
∑

s∈S
p(s)

∣∣gs − µτ
Tx

(g)
∣∣max

s′∈S

∣∣∣µs
`(g) − µs′

` (g)
∣∣∣

≤
∑

s∈S
p(s)

∣∣gs − µτ
Tx

(g)
∣∣ d(`) |gmax − gmin|

≤ d(`)
[∣∣gmax − µτ

Tx
(g)
∣∣ +
∣∣µτ

Tx
(g) − gmin

∣∣]∑

s∈S
p(s)

∣∣gs − µτ
Tx

(g)
∣∣

≤ d(`)

pmin

[∑

s∈S
p(s)

∣∣gs − µτ
Tx

(g)
∣∣
]2

≤ d(`)

pmin
· Varτ

Tx
(g),

where for the second equality we used the fact that g does not depend on T̃x, and the last

inequality is an application of Cauchy-Schwartz.

3Effectively this means that, conditioned on the configuration outside Tx being τ , g depends only on the

spin at the root x.
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5.2.3 Establishing EM through disagreement percolation

In this section we complete the proof of part (ii) of Theorem 5.6, by showing that the con-

dition on κ and γ in part (ii) implies the Entropy Mixing condition EM with ε exponentially

small in `. The main result in this section reads as follows.

Theorem 5.14 Any Gibbs distribution µη
T satisfies EM(`, c(γα)`/5) for all `, where α =

max {κb, 1}, κ and γ are the constants associated with the sequence
{
µη

T

}
as specified in

Definition 5.4, and c is a constant that depends only on pmin and (γα). In particular, if

max {γκb, γ} < 1 then there exists a constant ϑ such that, for every T , µη
T satisfies EM(`, ce−ϑ`)

for all `.

Notice that part (ii) of Theorem 5.6 follows by combining Theorems 5.14 and 5.10, exactly

as was done for part (i) immediately following Theorem 5.13.

Proof of Theorem 5.14: Fix arbitrary T , x ∈ T and τ ∈ Ωη
T for the rest of this proof.

Our argument is composed of three main ingredients, and as in the proof of Theorem 5.13,

here too the first ingredient is based on the bounds κ and γ give for the probability of

disagreements percolating down and up the tree respectively, as expressed by Claim 5.5.

However, here we will need a strengthening of part (i) of the claim. In particular, rather

than just a bound on the average Hamming distance under the coupling given in the claim,

here we will need a strong tail bound for this Hamming distance, i.e., we need to show

that this distance is not much larger than the bound given in Claim 5.5, with very high

probability. This is the content of the following lemma. Recall the notation used in Claim 5.5

and the coupling ν given in part (i) of the claim.

Lemma 5.15 For an integer `, let H` = maxEν |σ − σ′|z,i, where the maximum is taken over

all z ∈ Tx, s1, s2 ∈ S and 0 ≤ i ≤ `, and where ν ≡ νs1,s2
z is the coupling of µs1

T̃z
and µs2

T̃z
. Then

for all s1, s2 and every C > 0,

Pr
ν

[
|σ − σ′|x,` > CH`

]
≤ e

1
`+1

(
1− C

2e

)
,

where ν ≡ νs1,s2
x .

Notice that Claim 5.5 asserted the existence of a coupling ν with certain properties without

specifying ν explicitly. However, a specific coupling is constructed in the proof of this claim,

and it is this coupling that Lemma 5.15 refers to. The proof of the lemma goes by standard
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arguments from the analysis of branching processes, and is given in Section 5.2.4 following

the proof of Claim 5.5.

In order to see the role the above lemma plays in the proof of Theorem 5.14,

we need to introduce new notation. Recall that p(s) ≡ µτ
Tx

(σx = s), and write S+ ≡
{s : p(s) > 0} for the support of p. For s ∈ S+ and σ ∈ Ωτ

Tx
, define

gs(σ) =
µs

T̃x
(σ)

µτ
Tx

(σ)
=





1/p(s) if σx = s,

0 otherwise.

The key quantity we will work with in the sequel is the following:

g(`)
s = µBx,`

(gs).

Note that g
(`)
s (σ) depends only on the spins in ∂̃Bx,`. Indeed, let σx,` stand for the restriction

of σ to ∂̃Bx,`, i.e., to the sites at distance ` below x. It is easy to verify that g
(`)
s (σ) is equal

to
µs

T̃x
(σx,`)

µτ
Tx

(σx,`)
. Thus, for a given configuration σ, g

(`)
s (σ) is the ratio of the probabilities of

seeing the spins of σ at level ` below the root x when the spin at x is s and when there is no

condition on the spin at x, respectively. Now, recall that in the proof of Theorem 5.13, the

first ingredient for establishing VM was combining parts (i) and (ii) of Claim 5.5 to bound

the probability of disagreement d(`) in the two-stage procedure described there. Here we

take a similar step by combining the two parts to get the following corollary of the strong

tail bound in Lemma 5.15.

Corollary 5.16 For every C > 0, s ∈ S+, and all (s1, s2),

Pr
ν

[∣∣∣g(`)
s (σ) − g(`)

s (σ′)
∣∣∣ > C(γα)`

]
≤ e

1
`+1

(
1− pminC

2e

)
,

where ν ≡ νs1,s2
x is the coupling given in Claim 5.5.

Proof: It is enough to show that

|g(`)
s (σ) − g(`)

s (σ′)| ≤ γ`

pmin
· |σ − σ′|x,` (5.11)

since we can then apply Lemma 5.15 with C replaced by pminC, and by observing that

H` ≤ α` by part (i) of Claim 5.5. On the other hand, (5.11) follows from part (ii) of

Claim 5.5 once we recall that g
(`)
s (σ) = µσ

Bx,`
(gs) and that gs depends only on the spin at

the root x, implying that |g(`)
s (σ)− g

(`)
s (σ′)| ≤ ‖µσ

Bx,`
−µσ′

Bx,`
‖x · ‖gs‖∞ ≤ γ` |σ − σ′|x,` /pmin.
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Continuing with the proof of Theorem 5.14, the second ingredient is translating

the above tail bound for the difference between the values of g
(`)
s under the coupling ν, to a

strong concentration of g
(`)
s around its mean value 1 under the Gibbs distribution µτ

Tx
. This

is the content of the following lemma.

Lemma 5.17 Let s be a spin value. If there exists δ > 0 and a coupling ν of µs
T̃x

and µτ
Tx

such

that

Pr
ν

[∣∣∣g(`)
s (σ) − g(`)

s (σ′)
∣∣∣ > δ3

]
≤ δe−1/δ ,

then

µτ
Tx

[|g(`)
s − 1| > 2δ] ≤ 4e−1/δ .

Let us defer the proof of Lemma 5.17 for now, and move on to complete the proof of

Theorem 5.14.

Notice that strong concentration of g
(`)
s is a strong form of lack of correlation

between the spin at the root and the configuration ` levels below, i.e., it means that the

spin σx at the root is very marginally affected by conditioning on the configuration σx,`, for

almost all σx,`. The third and final ingredient we need in order to prove Theorem 5.14 is

a translation of this strong lack of correlation to EM, which is an alternative form of lack

of correlation between σx and σx,`. Such a translation is given in a more general setting in

Theorem A.10, and we cite below a specialization of it to the scenario here.

Lemma 5.18 There exists a numerical constant c such that, for any δ ≥ 0, if

µτ
Tx

[
|g(`)

s − 1| > δ
]
≤ e−2/δ (5.12)

for all s ∈ S+, then we have Entτ
Tx

[
µ

T̃x
(f)
]
≤ cp−2

minδEntτ
Tx

(f) for any non-negative function f

that does not depend on Bx,` ; in particular, EM(`, cp−2
minδ) holds.

We refer to Theorem A.10 in Appendix A.3 for a proof.

Combining Corollary 5.16, Lemma 5.17 and Lemma 5.18 proves Theorem 5.14 as

we now explain. First, notice that w.l.o.g. we can assume that γα < 1, because otherwise

the theorem is trivial since EM(`, 1) always holds. We can also assume that γ > 0, because

γ = 0 means that the spins are completely independent of each other, and hence EM(`, 0)

holds. Now observe that, since µτ
Tx

is a convex combination of the distributions µs′

T̃x
as s′

varies, there exists a coupling ν of µs
T̃x

and µτ
Tx

that satisfies the bounds given in Corol-

lary 5.16. Thus, by applying the latter with C = (γα)0.28`, we get that the hypothesis of
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Lemma 5.17 holds with δ = (γα)0.24` for all large enough `, and therefore that the hypoth-

esis of Lemma 5.18 holds with, for example, δ = (γα)0.2` for all large enough `. Finally,

by applying Lemma 5.18 with this value of δ, we get that EM(`, c(γα)0.2`) holds for some

constant c and all `, thus completing the proof of Theorem 5.14.

Finally, we go back and supply the missing proof of Lemma 5.17.

Proof of Lemma 5.17: We will show only that under the hypothesis of the lemma

µτ
Tx

[
g(`)
s − 1 > 2δ

]
≤ 2e−1/δ , (5.13)

since the same bound on the negative tail can be achieved by an analogous argument.

By the hypothesis, for every ε > 0,

µs
T̃x

[
g(`)
s − 1 > ε

]
≤ µτ

Tx

[
g(`)
s − 1 > ε − δ3

]
+ δe−1/δ . (5.14)

Next, we notice that by definition of g
(`)
s ,

µs
T̃x

[
g(`)
s − 1 > ε

]
≥ (1 + ε)µτ

Tx

[
g(`)
s − 1 > ε

]
. (5.15)

Combining (5.14) and (5.15) we get that, for every ε > 0,

µτ
Tx

[
g(`)
s − 1 > ε

]
≤
(

1

1 + ε

)(
µτ

Tx

[
g(`)
s − 1 > ε − δ3

]
+ δe−1/δ

)
. (5.16)

This immediately yields that, for every non-negative integer k and ε > 0,

µτ
Tx

[
g(`)
s − 1 > ε + kδ3

]
≤ (1 + ε)−(k+1) +

(
1

ε

)
δe−1/δ , (5.17)

where we applied (5.16) k + 1 times, each time increasing ε by δ3.

Inequality (5.13) then follows by applying (5.17) with ε = δ and k = b(1/δ)2c.

5.2.4 Bounds on disagreement percolation

In this section, we give the proofs of Claim 5.5 and Lemma 5.15, which establish bounds on

disagreement percolation in terms of κ and γ.
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Proof of Claim 5.5: The proof makes use of a standard recursive coupling along paths in

the tree (as in, e.g., [KMP01]). We start with part (i), i.e., constructing a coupling ν s1,s2
x

of µs1

T̃x
and µs2

T̃x
such that Eν |σ − σ′|x,l ≤ (κb)`. Since the underlying graph is a tree, we

can couple µs1

T̃x
and µs2

T̃x
recursively. This goes as follows. First, given the spin at x the

distributions on Tz (where z ranges over the children of x) are all independent of each

other, so we can couple the projections on the Tz ’s independently. Then, we couple the two

projections on Tz by first coupling the spin at z using the optimal coupling (the one that

achieves the variation distance) of the marginal distributions on the spin at z. Thus, the

spins at z disagree with probability at most κ. Once a coupled pair of spins at z is chosen,

we continue as follows: if the spins at z agree then we can make the configurations in T̃z

equal with probability 1 (because the two boundary conditions are the same); if the spins

at z differ, say the first is s′1 and the second is s′2, then we recursively couple µ
s′1
T̃z

and µ
s′2
T̃z

(i.e., using the coupling ν
s′1,s′2
z ). We let ν ≡ νs1,s2

x be the resulting coupling of µs1

T̃x
and

µs1

T̃x
, and notice that Eν |σ − σ′|x,l ≤ (κb)` since for every site y at distance ` below x the

probability that the two coupled spins at y disagree is at most κ`.

We go on to prove part (ii) of Claim 5.5. First, by writing a telescopic sum and

applying the triangle inequality we get that

‖µτ
Bx,`

− µτ ′

Bx,`
‖x ≤

d∑

i=1

‖µτ (i−1)

Bx,`
− µτ (i)

Bx,`
‖x ,

where d = |τ − τ ′|x,` and the sequence of configurations τ (i) is a site-by-site interpolation of

the differences between τ and τ ′ in ∂̃Bx,`. (It suffices to interpolate only over the differences

in ∂̃Bx,` since the distribution µτ
Bx,`

depends only on the configuration in ∂Bx,` and since τ

and τ ′ agree on the parent of x.)

It is now enough to show that ‖µτw,s1

Bx,`
− µτw,s2

Bx,`
‖x ≤ γ` for all τ , w ∈ ∂̃Bx,`, and

s1, s2 ∈ S, where we recall that τw,s denotes the configuration τ with the spin at w set

to s. This, however, follows by a coupling argument as before, where this time we couple

recursively along the path from w to x (i.e., up the tree). Specifically, suppose by induction

that in our coupling there is already a path of disagreement going from w to y, where y is

some site on the path from w to x. Let z denote the parent of y. At the next step we choose

a coupled pair of spins at z from the two distributions µτ1
A and µτ2

A , where the subset A

is Bx,` excluding the path from w to y (see Figure 5.2), and the configurations τ1, τ2 are

equal to τ except that the configuration along the path from w to y is that chosen by the
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w

y

z

x
x,lB

l

Figure 5.2: Coupling up the tree: given a path of disagreement from w to y, a coupled spin

at z is chosen from a coupling of the conditional distributions on A, where A is Bx,` with

the path from w to y excluded.

previous steps of the recursion, in each copy respectively. Notice, however, that once the

spin at y is fixed, the rest of the configuration on the path from w to y has no influence on

the distribution of the spin at z. Therefore, w.l.o.g. we can assume that the coupled pair of

spins at z is chosen from the distributions µτy,s′1

A and µτy,s′2

A (using an optimal coupling for the

projections onto the spin at z), where (s′1, s
′
2) is the pair of spins at y chosen in the previous

step of the recursion. Thus, the probability of disagreement at z given the disagreement

at y is ‖µτy,s′1

A − µτy,s′2

A ‖z ≤ γ, by definition of γ. Now, if the resulting spins at z agree

then the spins on the rest of the path to x are coupled to agree with certainty, while if

there is a disagreement at z we continue recursively starting from the disagreement at z.

We therefore conclude that the probability of disagreement at x in the resulting coupling of

µτw,s1

Bx,`
and µτw,s2

Bx,`
is γ`, as required.

Proof of Lemma 5.15: Fix an arbitrary `. For every z ∈ Tx, all s1, s2 ∈ S, and 0 ≤ i ≤ `,

let Hs1,s2

z,i ≡ Eν |σ −σ′|z,i denote the average Hamming distance at level i below z under the

coupling νs1,s2
z of µs1

T̃z
and µs2

T̃z
. Notice that here we also consider the case where s1 = s2

(for which Hs1,s2
z,i = 0). Now by an exponential Markov inequality, to prove the lemma

it is enough to show that for all (s1, s2), Eν

[
et|σ−σ′ |x,`

]
≤ e2etHs1 ,s2

x,` ≤ e2etH` for all t ≤
(2e(`+1)H`)

−1 ≤ 1, where ν = νs1,s2
x . We thus fix t as above and let Ds1,s2

z,i = Eν

[
et|σ−σ′ |z,i

]
,

where ν ≡ νs1,s2
z . Note that Ds1,s2

z,i can be calculated recursively as follows. The main

observation is that the random variable |σ − σ ′|z,i is the sum of the b independent random

variables |σ − σ′|y,i−1, where y ranges over the children of z. In turn, the random variable
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et|σ−σ′ |y,i−1 takes the value D
s′1,s′2
y,i−1 with probability νs1,s2

z (σy = s′1, σ
′
y = s′2) for every pair

(s′1, s
′
2).

We wish to show that, for t in the above range, Ds1,s2

x,` ≤ 1 + 2etHs1,s2

x,` ≤ e2etHs1 ,s2
x,`

for all (s1, s2). In fact, we show by induction on i that Ds1,s2

z,i ≤ 1 + 2t[ `+1
` ]iHs1,s2

z,i for every

z ∈ Tx, all (s1, s2), and every 0 ≤ i ≤ `. For the base case i = 0, notice that if s1 = s2 then

Hs1,s2
z,0 = 0 and Ds1,s2

z,0 = 1 because |σ − σ′|z,0 = 0 with certainty in this case. If s1 6= s2 then

|σ − σ′|z,0 = 1 with certainty, and therefore Hs1,s2
z,0 = 1 and Ds1,s2

z,0 = et ≤ 1 + 2t for t in the

given range. We now assume the claim for i, every z ∈ Tx and all pairs (s1, s2), and show

for i + 1, an arbitrary site z, and an arbitrary pair of spins (s1, s2). Let y ≺ z stand for “y is

a child of z.” Then as observed above,

Ds1,s2
z,i+1 =

∏

y≺z


∑

s′1,s′2

νs1,s2
z (σy = s′1, σ

′
y = s′2)D

s′1,s′2
y,i




≤
∏

y≺z


1 + 2t

[
` + 1

`

]i ∑

s′1,s′2

νs1,s2
z (σy = s′1, σ

′
y = s′2)H

s′1,s′2
y,i




≤ exp


2t

[
` + 1

`

]i ∑

y,s′1,s′2

νs1,s2
z (σy = s′1, σ

′
y = s′2)H

s′1,s′2
y,i




= exp

(
2t

[
` + 1

`

]i

Hs1,s2

z,i+1

)

≤ 1 +

(
` + 1

`

)
2t

[
` + 1

`

]i

Hs1,s2
z,i+1 ,

where for the first inequality we used the induction hypothesis, and for the last inequality

we used the fact that 2t[ `+1
` ]iHs1,s2

z,i+1 ≤ 1
`+1 for all 0 ≤ i ≤ ` and t in the given range.

5.2.5 Relaxing Theorem 5.6: Variants of κ and γ

For some of our applications in Section 5.3, we will require two minor but useful general-

izations of the framework for establishing bounded cgap and csob that we described above.

Both generalizations stem from the observation that the role of the definitions of κ and γ

is to obtain the bounds on disagreement percolation stated in Claim 5.5. In fact in Theo-

rem 5.6, we can replace κ and γ by any two values κ′ and γ′ for which the upper bounds in

parts (i) and (ii) of Claim 5.5 are O((κ′b)`) and O(γ′`) respectively (where the O( · ) hides
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constants independent of `). The arguments leading to Theorem 5.6 are all easily seen to

hold in this slightly looser setting.

Our first generalization (which will be particularly useful for “non-attractive” sys-

tems) is to consider two levels of the tree at a time, rather than a single level as in Defini-

tion 5.4. Accordingly, define

κ2 = sup
T

max
z,w≺z,

s1,s2,s′1,s′2

√
‖µs1

Tz
− µs2

Tz
‖z · ‖µs′1

Tw
− µ

s′2
Tw

‖w , (5.18)

where we recall that the boundary condition at the bottom of the tree is given by the

global boundary configuration η. In fact, we may restrict the maximization to sites z

of even (or odd) height. With this definition, it is easy to see that the upper bound in

Claim 5.5(i) for the probability of disagreement percolating down the tree can be replaced

by (κ2)
2(`/2−1)b` = O((κ2b)

`). We therefore get the following generalization of Theorem 5.6:

Theorem 5.6′ In the setting of Theorem 5.6 the following hold:

(i) If γκ2b < 1 then cgap is bounded for η.

(ii) If max {γκ2b, γ} < 1 then csob is bounded for η.

Our second generalization exploits the fact that, when deriving the bound on up-

ward percolation in part (ii) of Claim 5.5, it is enough to control the probability of a dis-

agreement percolating upwards one level from y to z only when z is sufficiently far from the

boundary and the root of Bx,`. For this purpose, let γ̂ be defined in the same way as γ, but

with the maximization restricted to sets A that include the full subtree of depth d rooted at z

under the orientation in which y is the parent of z; here d is an implicit parameter whose

value may change from model to model, but will in each case be a constant independent of

the size of T . Now, recall the recursive construction of the coupling in the proof of part (ii)

of Claim 5.5, and the subset A used in the inductive step for choosing a coupled spin at z

given a disagreement at y (see Figure 5.2). It is easy to verify that, if z is at distance at

least d from the bottom and top boundaries of Bx,`, then the subset A includes the full

subtree of depth d rooted at z under the orientation in which y is the parent of z. Therefore

for such z, the probability of disagreement percolating one level upwards to z is bounded

by γ̂. Thus, it is easy to modify the proof of Claim 5.5 so that the factor γ ` in part (ii) is

replaced by γ̂`−2d = O(γ̂`).
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In a similar manner, we define κ̂ as before but with the maximization restricted

to z that are at distance at least d from the bottom boundary of T . Whenever we use γ̂, we

will also use κ̂ with the same value of d so that we still have κ̂ ≤ γ̂. This leads to our second

generalization of Theorem 5.6:

Theorem 5.6′′ In the setting of Theorem 5.6 the following hold:

(i) If γ̂ κ̂b < 1 then cgap is bounded for η.

(ii) If max {γ̂ κ̂b, γ̂} < 1 then csob is bounded for η.

5.3 Applications

In this section, we apply the framework developed in Section 5.2 for establishing bounded

csob to a wide range of models and regimes of values of their parameters. In particular, for

all the scenarios of interest listed below, we calculate κ and γ (or their variants given in

Section 5.2.5), and show that max {γκb, γ} < 1. By Theorem 5.6 (ii) (or, in case we use

the variants, Theorem 5.6′ or 5.6′′), this immediately yields bounded csob. (Of course, the

weaker fact that cgap is bounded also follows.)

The models we discuss are (in order of appearance): the Ising model, the hard-

core model (independent sets), general two-spin models, colorings, and the ferromagnetic

Potts model. The scenarios we discuss include cases in which bounded csob is established

for specific boundary conditions (where csob is not bounded for other boundary conditions),

as well as cases for which we prove bounded csob uniformly in the boundary condition. The

detailed scenarios for each model are given at the beginning of the section dedicated to the

model, where an overview of previous results is also given.

5.3.1 Ising model

An overview of the Ising model on trees was already given in Section 5.1.2, and our detailed

results were stated in Theorems 5.2 and 5.3. For convenience, we restate those theorems

here.
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Theorem 5.2 For any fixed b, the Glauber dynamics on the n-vertex b-ary tree with (+)-

boundary condition has bounded csob, and therefore O(m log n) mixing time, at all inverse

temperatures β < ∞ and all external fields h.

Theorem 5.3 For any fixed b, the Glauber dynamics on the n-vertex b-ary tree with arbitrary

boundary conditions has bounded csob, and therefore O(m log n) mixing time, both (i) at all

inverse temperatures β < β1 and all external fields h; and (ii) at all inverse temperatures β <

∞ and all external fields |h| > hc(β).

The two theorems follow from the bounds on κ and γ given below. Recall that

γ ≡ γ(
{
µη

T

}
) depends only on the potentials of the system, while κ ≡ κ(

{
µη

T

}
) may also

depend on the boundary condition η.

Theorem 5.19 Consider the Ising model at inverse temperature β and external field h. Then:

(i) for all (β, h), γ ≤ eβ−e−β

eβ+e−β ;

(ii) if (β, h) are such that the Gibbs measure is unique (i.e., β ≤ β0 or |h| > hc(β)) then for

every ε > 0 there exists a large enough d such that γ̂ ≤ 1
b + ε, where d is the implicit

constant in γ̂;

(iii) for η the all-(+) boundary configuration, if (β, h) are such that the Gibbs measure is not

unique (i.e., β > β0 and |h| ≤ hc(β)) then κ ≡ κ(
{
µη

T

}
) ≤ 1

b .

Before proving Theorem 5.19, we first explain how to deduce Theorems 5.2 and 5.3

from it. Recall that following our general framework in Theorem 5.6 (ii), we wish to es-

tablish that max {γκb, γ} < 1 in the scenarios of Theorems 5.2 and 5.3. We start with the

scenario of arbitrary boundary conditions and high or intermediate temperature or large

external field, as in Theorem 5.3. Recall that κ ≤ γ for all boundary conditions. Thus,

max {γκb, 1} < 1 for all boundary conditions provided that γ < 1√
b

. However, using part (i)

of Theorem 5.19, we see that this is the case for all β < 1
2

ln(
√

b+1)

ln(
√

b−1)
, i.e., for all β < β1, com-

pleting the proof of Theorem 5.3 part (i). Part (ii) of Theorem 5.3 follows immediately

from part (ii) of Theorem 5.19 by applying Theorem 5.6′′, once we recall that κ̂ ≤ γ̂ for

all boundary conditions. We go on to the scenario of the (+)-boundary condition, as in

Theorem 5.2. Notice that the regime in which the Gibbs measure is unique is covered (for

arbitrary boundary conditions) by Theorem 5.3. For the regime in which the Gibbs measure
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is not unique, Theorem 5.2 follows immediately from part (iii) of Theorem 5.19, together

with the fact that γ < 1 for all β < ∞, which is apparent from part (i) of the same theorem.

Proof of Theorem 5.19: To bound κ and γ, we need to bound a quantity of the form

‖µτy,+

A − µτy,−

A ‖z , where y ∈ ∂A and z ∈ A is a neighbor of y. The key observation is

that this quantity can be expressed very cleanly in terms of the “magnetization” at z, i.e.,

the ratio of probabilities of a (−)-spin and a (+)-spin at z. It will actually be convenient

to work with the magnetization without the influence of the neighbor y: thus we let µτy,∗

A

denote the Gibbs distribution with boundary condition τ , except that the spin at y is free

(or equivalently, the edge connecting z to y is erased). We then have:

Proposition 5.20 For any subset A ⊆ T , any boundary configuration τ , any site y ∈ ∂A and

any neighbor z ∈ A of y, we have

‖µτy,+

A − µτy,−

A ‖z = Kβ(R),

where R =
µτy,∗

A (σz=−)

µτy,∗
A (σz=+)

and the function Kβ is defined by

Kβ(a) =
1

e−2βa + 1
− 1

e2βa + 1
.

Proof: First, w.l.o.g. we may assume that the edge between y and z is the only one con-

necting y to A; this is because a tree has no cycles, so once the spin at y is fixed A decom-

poses into disjoint components that are independent. We abbreviate µτy,+

A , µτy,−

A and µτy,∗

A

to µ+
A, µ−A and µ∗A respectively. Thus ‖µτy,+

A − µτy,−

A ‖z = |µ+
A(σz = +) − µ−A(σz = +)|, and

R =
µ∗A(σz=−)
µ∗A(σz=+) . We write R+ for

µ+
A(σz=−)

µ+
A(σz=+)

and R− for
µ−A(σz=−)

µ−A(σz=+)
. Since the only influence of y

on A is through z, we have R+ = e−2βR and R− = e2βR. The proposition now follows once

we notice that, by definition of R+ and R−, µ+
A(σz = +) = 1

R++1
and µ−A(σz = +) = 1

R−+1
.

Now it is easy to check that Kβ(a) is an increasing function in the interval [0, 1],

decreasing in the interval [1,∞], and is maximized at a = 1. Therefore, we can always

bound κ and γ from above by Kβ(1) = eβ−e−β

eβ+e−β . Indeed, for γ we must make do with this

crude bound because we cannot rule out the possibility that R = 1 when the subset A

and the boundary configuration τ are arbitrary, and this completes the proof of part (i) of

Theorem 5.19. However, for γ̂ and κ we only have to consider restricted scenarios (either

because A includes a deep enough full subtree in the case of γ̂, or because the boundary



114

condition is specific in the case of κ), and as we shall see below, we get better bounds for

these quantities by calculating the magnetization R in the relevant scenarios.

Before giving the details of the calculation of the magnetization, we make the

following two remarks regarding γ̂. Recall that, in order to bound γ̂, we need to consider

an arbitrary subset A that includes a deep enough subtree B rooted at z and an arbitrary

boundary condition outside A, i.e., we wish to calculate the magnetization R at z in this

setting. Now, notice that the Gibbs distribution on A is a convex combination of µσ
B as σ

varies. Thus, if we establish that the magnetization R at z for the subtree B with an arbitrary

boundary condition is at least a1 and at most a2, then this immediatly implies the same for

the subset A. The second point we wish to make is that the Ising model is monotone, i.e., by

changing spins on the boundary from (+) to (−) the magnetization R = Pr(σz=−)
Pr(σz=+) can only

increase. Therefore, in order to establish upper and lower bounds on the magnetization

for arbitrary boundary conditions, it is enough to bound the magnetization for the all-(+)

and all-(−) configurations respectively. Therefore, from here onwards we concentrate on

calculating the magnetization at the root of full subtrees when the boundary condition at

the bottom of the subtree is either all-(+) or all-(−). Notice also that a full subtree with the

all-(+) boundary is what we need to consider for bounding κ in part (iii) of Theorem 5.19.

A recursive calculation of the magnetization at the root of full subtrees

Fix a boundary configuation τ , and for a site z with parent y let Rz,` = p(σz=−)
p(σz=+) , where

p(·) = µτy,∗

Bz,`
(·). (If z is the root of T

b then p(·) = µτ
Bz,`

(·).)
We now describe a recursive calculation of the magnetization Rz,`, the details

of which (up to change of variables) can be found in [Bax82] or [BRSSZ01]. Recall

that x ≺ z denotes that x is a child of z. A simple direct calculation gives that Rz,` =

e−2βh
∏

x≺z F (Rx,`−1), where F (a) ≡ Fβ(a) = a+e−2β

e−2βa+1
. In particular, if τ is the all-(+)

configuration (i.e., Rx,0 = 0 for all x) then Rz,1 = e−2βh[F (0)]b. We let F (∞) ≡ e2β

and notice that indeed, if τ is the all-(−) configuration (i.e., Rx,0 = ∞ for all x), then

Rz,1 = e−2βh[F (∞)]b. From here onwards we limit our attention to the all-(+) and all-(−)

boundary conditions. We thus define

J(a) ≡ Jβ,h(a) = e−2βh[F (a)]b (5.19)

and observe that Rz,` equals J (`)(0) and J (`)(∞) for τ all-(+) and all-(−) respectively,

where J (`) stands for the `-fold composition of J .



115

Now that we have expressed the magnetization in terms of the function J , our next

step is relating J to the function Kβ in Proposition 5.20, which expresses the total variation

distance in terms of the magnetization. To begin, let us describe some properties of J that

we shall use (refer to Fig. 5.3): J is continuous and increasing on [0,∞), with J(0) =

e−2β(h+b) > 0 and supa J(a) = e−2β(h−b) < ∞. This immediately implies that J has at

least one fixed point in [0,∞). In fact, whether J has one or more fixed points corresponds

exactly to whether the Gibbs measure (for the same values of β and h) is unique or not.

This is because the Gibbs measure is unique if and only if the magnetization at the root

of the tree of depth ` converges with ` to the same value conditioned on the all-(+) and

all-(−) boundary configurations respectively. We denote by a0 the least fixed point of J .

Since a0 is the least fixed point and J(0) > 0 then clearly J ′(a0) ≤ 1, where J ′(a) ≡ ∂J(a)
∂a

is the derivative of J . In particular, when the Gibbs measure is unique, the derivative at the

unique fixed point a0 is ≤ 1. We also observe that J has a single point of inflection a∗, i.e.,

the derivative J ′ is monotonically increasing on [0, a∗) and decreasing on [a∗,∞) for some

a∗ ∈ R
+. (This follows from the fact that the equation J ′′(a) = 0 has a unique solution,

as can be verified by straightforward calculus). Therefore, J can have at most three fixed

points, and furthermore, if it has two or three fixed points, then necessarily a∗ ≥ a0, i.e.,

J ′(a) ≤ J ′(a0) ≤ 1 for a ∈ [0, a0].

a

a
0

a
0

(iii)

a

J(a)(ii)(i)
J(a)

a

a
0

J(a)

10 00 1 11

Figure 5.3: Curve of the function J(a), used in the proof of Theorem 5.19, for β > β0 and

various values of the external field h. (i) h < −hc; (ii) h = −hc(β); (iii) hc(β) > h >
−hc(β). The point a0 is the smallest fixed point of J .

The relevance of the derivative J ′ and the fixed point a0 to the discussion here is

made clear by the following lemma.

Lemma 5.21 For every a ∈ R
+, Kβ(a) = 1

b · a
J(a) · J ′(a).
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Proof: From the definitions of J and F we have:

J ′(a) = e−2βh · b · [F (a)]b−1F ′(a)

= b · J(a) · F ′(a)

F (a)

= b · J(a)

a
· a
[ 1 − e−4β

(a + e−2β)(e−2βa + 1)

]

= b · J(a)

a
· Kβ(a).

We are now ready to complete the proof of the bounds on γ̂ and κ given in parts (ii)

and (iii) of Theorem 5.19.

Bounding γ̂ when the Gibbs measure is unique

When the Gibbs measure is unique, the magnetization Rz,` converges with ` to the unique

fixed point a0 of J , for which J ′(a0) ≤ 1, and thus Kβ(a0) ≤ 1
b by Lemma 5.21. We now

observe that since a0 is the unique fixed point, for every ε′ > 0 there exists a large enough d

such that Rz,d ≥ a0 − ε′ for the all-(+) boundary condition, and Rz,d ≤ a0 + ε′ for the all-

(−) boundary condition. As explained above, this means that for any subset A that includes

the full subtree of depth d rooted at z, and with arbitrary boundary condition outside A,

the relevant magnetization Rz ∈ [a0 − ε′, a0 + ε′]. (From here onwards we write Rz for

the magnetization R at z as defined in Proposition 5.20, where the subset A, the boundary

condition τ , and the neighbor y of z are clear from the context.) Now, since Kβ(a) is

continuous in a, we deduce that that Kβ(Rz) ≤ 1
b + ε for some ε that depends on ε′. In

particular, when the Gibbs measure is unique, for every ε > 0 there exists a large enough d

such that γ̂ ≤ 1
b + ε. This concludes the proof of part (ii) of Theorem 5.19.

Bounding κ for the (+)-boundary condition when the Gibbs measure is not unique

We now assume that η (the global boundary configuration) is all-(+) and consider (β, h)

such that the Gibbs measure is not unique, i.e., β > β0 and |h| ≤ hc(β). As we shall see

below, the property of this regime that we use here is that J has at least two fixed points,

and therefore J ′(a) ≤ 1 for a ∈ [0, a0].

To calculate κ, we need to bound the variation distance ‖µ+
Tz

− µ−Tz
‖z, which by

Proposition 5.20 is equal to Kβ(Rz), where Rz =
µ∗Tz

(σz=−)

µ∗Tz
(σz=+) and µ∗Tz

is the Gibbs distribu-

tion over the subtree Tz when it is disconnected from the rest of T and the spins on its
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bottom boundary agree with η. Now, since η is all-(+), then Rz = J (`)(0), where ` is the

distance of z from the bottom boundary of T . We thus have κ = supT maxz∈T Kβ(Rz) =

sup`≥1 Kβ(J (`)(0)).

Since J is monotonically increasing and a0 is the least fixed point of J , then clearly

J (`)(0) converges to a0 from below, i.e., J (`)(0) ≤ a0 for all `. Now by applying Lemma 5.21,

since J ′(a) ≤ 1 for a ∈ [0, a0] in the non-uniqueness regime, and since J(a) ≥ a for the

same a, Kβ(J (`)(0)) = 1
b · J(`)(0)

J(J(`)(0))
· J ′(J (`)(0)) ≤ 1

b for all `. This completes the proof of

part (iii) of Theorem 5.19.

Remark: We note that in fact κ ≤ 1
b

for β ≤ β0 (and arbitrary h) as well. This follows from the fact

that γ ≤ eβ−e−β

eβ+e−β ≤ 1
b

in this regime. We also note that κ̂ ≤ 1
b

+ ε throughout the uniqueness regime,

as is aparent from part (i) of the above theorem. Indeed, the only obstacle to proving κ ≤ 1
b

for the

all-(+) boundary in all (β, h) is that for β < β0 and h < −hc(β), the derivative J ′(J (`)(0)) > 1 for

some ` (see Figure 5.3). Notice, however, that this derivative converges with ` to a value not larger

than 1. (This was used for proving γ̂ ≤ 1
b

+ ε in this regime.)

5.3.2 The hard-core model

We now move on to consider the hard-core model (defined in Example 2.2) on regular

trees. We first review the phase diagram of this model. It is well known that the hard-

core model undergoes a phase transition at a critical activity λ = λ0 = bb

(b−1)b+1 (see, e.g.,

[Spi75, Kel85]). For λ ≤ λ0 there is a unique Gibbs measure independent of the boundary

condition, while for λ > λ0 there are (at least) two distinct phases, corresponding to the

“odd” and “even” boundary conditions respectively. The even (odd) boundary condition

is obtained by making the leaves of the tree all occupied if the depth is even (odd), and

all unoccupied otherwise. For λ > λ0, the probability of occupation of the root in the

infinite-volume Gibbs measure differs for odd and even boundary conditions.

The Glauber dynamics for the hard-core model on trees is known to have mixing

time polynomial in n at all activities λ > 0 with arbitrary boundaries [JSTV02]. Moreover, a

rather general result of Luby and Vigoda [LV99, Vig01] ensures a mixing time of O(m log n)

when λ < 2
b−1 , with arbitrary boundaries. This latter result actually holds for any graph G

of maximum degree b + 1.

Our results for the hard-core model mirror those stated above for the Ising model.

First, we show that csob is bounded (and therefore that the mixing time is O(m log n)) for



118

all activities λ ≤ λ0 (and indeed beyond), with arbitrary boundary conditions. Second, for

the even (or odd) boundary condition, we get the same result for all activities λ:

Theorem 5.22 For the hard-core model on the regular b-ary tree, csob is bounded in both of

the following situations:

(i) the boundary condition is arbitrary, and λ ≤ max
{
λ0,

1√
b−1

}
;

(ii) the boundary condition is even (or odd), and λ > 0 is arbitrary.

Part (ii) of this theorem is analogous to our earlier result (Theorem 5.2) that csob is

bounded for the Ising model with the (+)-boundary at all temperatures. This is in line with

the intuition that the even boundary eliminates the only bottleneck in the dynamics. Part (i)

identifies a region in which the mixing time is insensitive to the boundary condition. We

would expect this to hold throughout the low-activity region λ ≤ λ0, and indeed, by analogy

with the Ising model, also in some intermediate region beyond this. Our bound in part (i)

confirms this behavior: note that the quantity 1√
b−1

exceeds λ0 for all b ≥ 5, and indeed for

large b it grows as Θ( 1√
b
) compared to the Θ( 1

b ) growth of λ0. Thus for b ≥ 5 we establish

bounded csob (and O(m log n) mixing time) in a region above the critical value λ0. To the

best of our knowledge this is the first such result. (Note that the result of [LV99, Vig01]

mentioned earlier establishes O(m log n) mixing time only for λ < 2
b−1 , which is less than λ0

for all b and so does not even cover the whole uniqueness region.)

Following the standard theme in this section, we appeal to our general framework

in Theorem 5.6 and its variants to deduce Theorem 5.22 from:

Theorem 5.23 For the independent sets model with activity parameter λ:

(i) γ̂ < λ
1+λ (for d = 3, where d is the implicit parameter in γ̂);

(ii) if the Gibbs measure is unique (i.e., λ ≤ λ0), then for every ε > 0 there exists a large

enough d such that γ̂ ≤ 1
b + ε;

(iii) for η the 0-boundary condition (i.e., all sites are unoccupied), if the Gibbs measure is not

unique (i.e., λ > λ0) then κ2 ≡ κ2(
{
µη

T

}
) ≤ 1

b .

Recall that κ̂ ≤ γ̂, so from part (i) of this theorem we conclude that γ̂ κ̂b < 1 when ( λ
1+λ)2 ≤

1
b , i.e., when λ ≤ 1√

b−1
, and also whenever λ ≤ λ0 by part (ii). Since also γ̂ < 1 for all
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finite λ, part (i) of Theorem 5.22 follows using Theorem 5.6′′. This also dispenses with

part (ii) of Theorem 5.22 in the uniqueness regime. Part (ii) in the non-uniqueness regime

follows immediately from part (iii) of Theorem 5.23, using Theorem 5.6′ and the fact that

γ < 1. (Note that analyzing the 0-boundary for all depths of T handles both odd and even

boundary conditions.)

Remark: Recall that by establishing γ̂κ̂b < 1 for all boundary conditions in the regime λ ≤
1√
b−1

, we in fact establish VM(`, exp(−Θ(`))) for all boundary conditions, and in particular, that

correlations decay with distance under any boundary condition for this λ. This implies that any

Gibbs measure that is the limit of finite Gibbs distributions for some fixed boundary configuration

is extremal, extending the regime for which this was previously known. (For more on extremality

under specific boundary conditions, see [BW03, Mar03].)

Proof of Theorem 5.23: The proof uses similar ideas to those used in the proof of The-

orem 5.19 for the Ising model. We start with a closer look at the variation distance we

need to bound in order to bound κ and γ, i.e., ‖µτy,1

A − µτy,0

A ‖z, for some τ , A, z ∈ A, and

where y ∈ ∂A is a neighbor of z. Now, from the definition of the hard-core model, in the

first distribution the site z is unoccupied with certainty, and hence the variation distance

between the two distributions at z is exactly the probability that z is occupied in the second

distribution (where y is unoccupied, or equivalently, where the edge connecting y and z is

removed). Let pz stand for this last probability. Formally,

‖µτy,1

A − µτy,0

A ‖z = µτy,0

A (σz = 1) ≡ pz. (5.20)

Our main goal in the rest of this proof is to bound the probability of occupation pz for the

relevant values of λ and global boundary condition η.

We start with the easy observation that, for any subset A, any boundary configu-

ration τ and any site z ∈ A, µτ
A(σz = 1) ≤ λ

1+λ , simply because the r.h.s. is the probability

of z being occupied when all its neighbors are unoccupied, and if one of its neighbors is

occupied than z is unoccupied with certainty. Using (5.20), we deduce that γ ≤ λ
1+λ . We

can strengthen this to γ̂ < λ
1+λ by noticing that equality is achieved in the above only when

all neighbors of z are unoccupied with certainty, which can happen only if all neighbors

of z are in ∂A or adjacent to ∂A. So by taking d = 3 in the definition of γ̂ we get strict

inequality, and we are done with part (i) of Theorem 5.23. Parts (ii) and (iii) follow from

a recursive calculation of the probabilities of occupation pz similar to the arguments given

for the Ising model, as we now describe.
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A recursive calculation of the probabilities of occupation pz

We first note that a similar calculation to the one we describe below was done in, e.g.,

[Kel85]. As in the Ising model, we consider subtrees Bz,d (disconnected from the parent y

of z, or equivalently, with y unoccupied) and with a fixed boundary configuration τ . Let

Rz,d = pz

1−pz
stand for the ratio of probabilities that the site z is occupied and unoccupied

respectively. A simple calculation verifies that Rz,d = λ
∏

w≺z

(
1

1+Rw,d−1

)
. For each λ, we

thus define the function

J(a) = λ

(
1

1 + a

)b

(5.21)

and observe that, when the boundary condition is all-0 (respectively all-1), then Rz,d =

J (d)(0) (respectively J (d)(∞)). Notice, however, that unlike the case of the Ising model,

here J is monotonically decreasing. Furthermore, since J(0) = λ > 0, J has a unique fixed

point for every λ; we denote this fixed point by a0 = a0(λ). We also note that the derivatives

of J alternate signs (the odd derivatives being negative). Now uniqueness of the Gibbs

measure is equivalent to the fixed point a0 being attractive, i.e., the derivative J ′(a0) ≥ −1;

indeed, when λ = λ0 is critical the derivative at a0 = a0(λ0) is exactly −1. The equivalence

between uniqueness of the Gibbs measure and the attractiveness of a0 is better understood

by considering the function J2(a) ≡ J (2)(a) ≡ J(J(a)), which corresponds to jumping two

levels at a time. The main observation is that, since J is monotonically decreasing, J2 must

be monotonically increasing, and thus plays a similar role to that of J in the Ising model.

Let us now further describe some properties of the function J2 (see Fig. 5.4), which

can be verified using simple calculus:

1. J2 is continuous and increasing on [0,∞), with J2(0) = λ/(1+λ)b and supa J2(a) = λ.

2. a0 (the unique fixed point of J) is a fixed point of J2.

3. If the Gibbs measure is unique (i.e., λ ≤ λ0) then a0 is the unique fixed point of J2.

If there are multiple Gibbs measures (i.e., λ > λ0) then J2 has three fixed points

a1 < a0 < a2, where J(a1) = a2 and J(a2) = a1.

4. The derivative J ′2(a) ≡ ∂J2(a)
∂a is continuous. If a0 is the unique fixed point of J2

(the Gibbs measure is unique) then J ′2(a0) ≤ 1. If there are three fixed points then

J ′2(a0) > 1, and J ′2(a) ≤ 1 for a ∈ [0, a1].
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J (a)2

Figure 5.4: Curve of the function J2(a), used in the proof of Lemma 5.23, for λ > λ0. The

points a1, a0, a2 are the fixed points of J2 in increasing order.

It is now easy to see that, since J ′2(a0) = J ′(a0)
2, then indeed the Gibbs measure is unique

if and only if J ′(a0) ≥ −1.

Before we go on, we wish to further clarify the connection between the unique-

ness of the Gibbs measure and the uniqueness of the fixed point of J2. First, notice that

for odd-depth (respectively, even-depth) trees, the probability of occupation at the root

is monotonically decreasing (respectively, increasing) in the boundary configuration. In

particular, for both even and odd depths, the all-0 and all-1 boundaries are the extreme

boundary configurations, i.e., for all boundary conditions the probability of occupation at

the root is in the range delimited by the probabilities under the all-0 and all-1 boundary

conditions. Thus, when J2 has a unique fixed point, the probability pz of occupation at

the root of even-depth trees converges with the depth of the tree to the same value for all

boundary configurations. This also means that pz converges to the above value in odd-depth

trees (uniformly in the boundary condition), because the limit for even-depth trees with the

all-0 boundary is the same as the limit for odd-depth trees with the all-1 boundary, and vice

versa.

With the above recursive calculation of pz at hand, we can now complete our

arguments for bounding γ̂ and κ.

Bounding γ̂ when the Gibbs measure is unique

Here it is enough to show that, when the Gibbs measure is unique, then p0 ≤ 1
b , where

p0 is the value to which the probability pz converges with the depth of the tree. This is
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because, following an explanation similar to that given in the proof for the Ising model, for

every ε > 0 there exists a large enough d such that, for any subset A that includes the full

subtree of depth d, pz ∈ [p0 − ε, p0 + ε] uniformly in the boundary condition. In particular,

γ̂ ≤ p0 + ε ≤ 1
b + ε.

To see that p0 ≤ 1
b we observe that p0 = a0

1+a0
, where a0 is the fixed point of J , and

recall that J ′(a0) ≥ −1 in the regime of λ we consider. Now note that, by a straightforward

calculation,

J ′(a) = −b · J(a)

1 + a
. (5.22)

Thus, since a0 is a fixed point of J , we have −J ′(a0) = b · J(a0)
1+a0

= b · a0
1+a0

= bp0. On the

other hand, since −J ′(a0) ≤ 1, we conclude that p0 ≤ 1
b , as required. This completes the

proof of part (ii) of Theorem 5.23.

Bounding κ for the all-0 boundary when the Gibbs measure is not unique

Here the boundary condition η is set to all-0 and λ > λ0, i.e, the Gibbs measure is not

unique. Once again, our aim is to calculate the probabilities of occupation pz. Here, how-

ever, A is a maximal subtree Tz and the bottom boundary condition is η (rather than arbi-

trary). We start by noticing that, since η is the all-0 configuration, then pz

1−pz
≡ Rz = J (`)(0),

where ` is the distance of z from the bottom boundary of T . Notice that since we are in

the regime of non-uniqueness of the Gibbs measure, the sequence J (`)(0) does not con-

verge with ` to a0, but oscillates around it, i.e., J (2`)(0) = J
(`)
2 (0) converges to a1 while

J (2`+1)(0) = J(J
(`)
2 ) converges to a2.

Recall that κ2
2 = supT maxw≺z ‖µ1

Tz
−µ0

Tz
‖z ·‖µ1

Tw
−µ0

Tw
‖w = maxw≺z pzpw, and that

it is enough to consider sites z whose height in T is odd. Therefore, by letting K(R) = R
1+R

(i.e., K translates the ratio R = p
1−p to p), we see that κ2

2 = sup`≥1 K[J(J
(`)
2 (0))]·K[J

(`)
2 (0)].

We will use the properties of J2 in order to show that the last expression is bounded by 1
b2

.

Again we show a connection between the derivative (this time of J2) and the
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relevant probabilities of occupation K(J(R)) · K(R). Using (5.22) to calculate J ′2(a) gives:

J ′2(a) = J ′(J(a)) · J ′(a)

= b

(
J(J(a))

1 + J(a)

)
· b
(

J(a)

1 + a

)

= b2 · J2(a)

a
· J(a)

1 + J(a)
· a

1 + a

= b2 · J2(a)

a
· K(J(a)) · K(a).

We now recall that J
(`)
2 (0) converges to a1 from below, and that J2(a) ≥ a and J ′2(a) < 1

for all a ∈ [0, a1], to conclude that for all `,

K[J(J
(`)
2 (0))] · K[J

(`)
2 (0)] =

1

b2
· J

(`)
2 (0)

J2(J
(`)
2 (0))

· J ′2(J (`)
2 (0))) ≤ 1

b2
,

as required. This completes the proof of part (iii) of Theorem 5.23.

5.3.3 General two-spin systems

It is not too difficult to see that most of our analysis of the hard-core model was based

on the same high-level ideas as the analysis of the Ising model. Indeed, in this subsection

we show that these ideas are part of a general theory that holds for any spin system for

which the spin space S consists of two values, and for which the pair- and self-potentials

are uniform in the edges and sites of the tree, respectively.

Here we will consider the following specification of two-spin systems with uniform

potentials. First, w.l.o.g. we can assume that S = {−,+}. Furthermore, we can assume that

the value of the pair potential U{x,y}(−,+) < ∞ since otherwise the system is trivial with

only two feasible configurations (all-(+) and all-(−) respectively). Now, since the Gibbs

distribution remains unaffected by adding a uniform constant value to the potential, we

can assume w.l.o.g. that U{x,y}(−,+) = 0, and hence that the pair potential is specified

by the two values U{x,y}(−,−) and U{x,y}(+,+). We let λ(−) = exp(−U{x,y}(−,−)) and

λ(+) = exp(−Ux,y(+,+)). In a similar manner, we can assume w.l.o.g. that the self po-

tential Ux(+) = 0, and let λ = exp(−Ux(−)). Notice that the Gibbs distribution assigns

to configuration σ probability proportional to λ#{−} · (λ(−))
#{−,−} · (λ(+))

#{+,+}, where

# {−} ,# {−,−} and # {+,+} stand for the number of sites whose spin is (−), edges whose

spins are {−,−} and edges whose spins are {+,+} respectively in σ. From here onwards we
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assume that a two-spin system is specified by the three parameters (λ, λ(−), λ(+)). For ex-

ample, the Ising model with parameters (β, h) is given by λ = e−2βh and λ(−) = λ(+) = e2β .

The hard-core model with activity λ is given by λ, λ(−) = 0 and λ(+) = 1, where we have

identified the spins 0 and 1 of the hard-core model with (+) and (−) respectively. Before

stating our results for two-spins systems, we note that the case λ(−) = λ(+) = 0 corresponds

to a trivial system with only two feasible configurations (the “odd” and “even” configura-

tions respectively, in which the spin values alternate along the levels of the tree). We thus

assume w.l.o.g. that in any given system λ(+) > 0.

Our results for general two-spins systems are summarized in the following theo-

rem:

Theorem 5.24 For any two-spin system (λ, λ(−), λ(+)) on the regular b-ary tree:

(i) if the Gibbs measure is unique then csob is bounded uniformly in the boundary condition;

(ii) csob is bounded for the all-(+) (and therefore also for the all-(−)) boundary condition.

As usual, this follows from bounds on κ, γ:

Theorem 5.25 For any two-spin system (λ, λ(−), λ(+)) on the regular b-ary tree:

(i) if the Gibbs measure is unique then, for every ε > 0, there exists a large enough d such

that γ̂ ≤ 1
b + ε;

(ii) for η the all-(+) configuration, if the Gibbs measure is not unique then κ2 ≡ κ2(
{
µη

T

}
) ≤

1
b .

We observe that γ < 1 for every two-spin system (because we are assuming λ(+) > 0 and

thus for any boundary condition, the spin at any given site is (+) with positive probability),

and hence Theorem 5.24 follows from Theorem 5.25 by applying either Theorem 5.6 ′′ in

case the Gibbs measure is unique, or Theorem 5.6′ for the (+)-boundary in case the Gibbs

measure is not unique.

Proof of Theorem 5.25: The first step in the proof is relating the total variation distance

at z between two distributions that differ in a single boundary site y to the “magnetization”

at z. The following is a generalization of Proposition 5.20:
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Proposition 5.26 For any subset A ⊆ T , any boundary configuration τ , any site y ∈ ∂A and

any neighbor z ∈ A of y, we have

‖µτy,+

A − µτy,−

A ‖z = |K(R)|,

where R =
µτy,∗

A (σz=−)

µτy,∗
A (σz=+)

and the function K is defined by

K(a) =
λ(+)

a + λ(+)
− 1

λ(−)a + 1
.

Proof: First, as was already explained in the proof of Proposition 5.20, w.l.o.g. we may

assume that the edge between y and z is the only one connecting y to A. As in the previous

proof, we abbreviate µτy,+

A , µτy,−

A and µτy,∗

A to µ+
A, µ−A and µ∗A respectively. Thus ‖µτy,+

A −
µτy,−

A ‖z = |µ+
A(σz = +)−µ−A(σz = +)|, and R =

µ∗A(σz=−)
µ∗A(σz=+) . We write R+ for

µ+
A(σz=−)

µ+
A(σz=+)

and R−

for
µ−A(σz=−)

µ−A(σz=+)
. Again, since the only influence of y on A is through z, we have R+ = R

λ(+)

and R− = Rλ(−). The proposition now follows once we notice that, by definition of R+

and R−, µ+
A(σz = +) = 1

R++1 and µ−A(σz = +) = 1
R−+1 .

The next step is generalizing the recursive calculation of the magnetization at

the root of full subtrees. As we did for the Ising model, fix a boundary configuation τ ,

and for a site z with parent y let Rz,` = p(σz=−)
p(σz=+) , where p(·) = µτy,∗

Bz,`
(·). (If z is the root

of T
b then p(·) = µτ

Bz,`
(·).) A direct calculation (similar to that for the Ising model) gives

that Rz,` = λ
∏

x≺z F (Rx,`−1), where F (a) =
λ(−)a+1

a+λ(+)
. In particular, if τ is the all-(+)

configuration (i.e., Rx,0 = 0 for all x) then Rz,1 = λ[F (0)]b. Again, we let F (∞) ≡ λ(−)

and notice that indeed, if τ is the all-(−) configuration (i.e., Rx,0 = ∞ for all x), then

Rz,1 = λ[F (∞)]b. As before, this motivates us to define

J(a) = λ[F (a)]b, (5.23)

where we notice that Rz,` equals J (`)(0) and J (`)(∞) for τ all-(+) and all-(−) respectively.

We now observe that the relationship established for the Ising and hard-core mod-

els between K and the derivative of J holds for general two-spin systems. In particular, a

straightforward calculation verifies that K(a) = aF ′(a)/F (a) for all a, and therefore

J ′(a) = bJ(a)
F ′(a)

F (a)
= b · J(a)

a
· K(a). (5.24)

The proof of Theorem 5.25 will be concluded once we notice that the function J

here has the same properties and relationships with the uniqueness of the Gibbs measure
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as those mentioned earlier for the Ising and hard-core models. To this end, we separate the

discussion into two classes of systems, where we think of the Ising and hard-core models

as the representatives of each class. We say that a system is ferromagnetic (respectively,

antiferromagnetic) if λ(−) · λ(+) > 1 (respectively, if λ(−) · λ(+) < 1). Notice that in a

ferromagnetic system neighboring spins are positively correlated, i.e., the spin at site z

is more likely to be (+) conditioned on its neighbor being (+) than conditioned on its

neighbor being (−). In an antiferromagnetic system, the opposite effect takes place. Indeed,

if λ(−) · λ(+) = 1 then the spin at z is independent of the spins of its neighbors. Notice that

in the latter case the Gibbs distribution is a product distribution, and trivially κ = γ = 0 for

all boundary conditions.

We now describe the properties of the function J , first for ferromagnetic and then

for antiferromagnetic systems.

Ferromagnetic systems

For a ferromagnetic system, the function J has all the properties we described earlier in the

Ising model case. Specifically:

1. J is continuous and increasing on [0,∞), with J(0) = λ(1/λ(+))
b > 0 and supa J(a) =

λ(λ(−))
b < ∞.

2. J has at least one fixed point in [0,∞). The fixed point is unique if and only if the

system admits a unique Gibbs measure.

3. J ′(a0) ≤ 1, where a0 denotes the least fixed point of J . In particular, if the Gibbs

measure is unique then the derivative at the unique fixed point is J ′(a0) ≤ 1.

4. If a0 is not the unique fixed point then J ′(a) ≤ 1 for a ∈ [0, a0]. (This follows from

the fact that J has a single point of inflection point a∗, i.e., the derivative J ′ is mono-

tonically increasing on [0, a∗) and decreasing on [a∗,∞) for some a∗ ∈ R
+, which also

means that J has at most three fixed points.)

We note that the relationship with the uniqueness of the Gibbs measure follows from the

fact that the all-(−) and all-(+) configurations are the minimal and maximal boundary

conditions respectively, as in the case of the Ising model, i.e., for any boundary condition
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the probability that the spin at z is (+) is bounded below and above by the same probability

under the all-(−) and all-(+) boundary conditions respectively.

Now, part (i) of Theorem 5.25 follows by the same argument used for the Ising

model in the uniqueness regime (see the proof of Theorem 5.19) since the variation distance

for the fixed-point magnetization |K(a0)| = 1
b |J ′(a0)| ≤ 1

b . For part (ii) we repeat the

observation that, for η the all-(+) configuration, κ ≡ κ(
{
µη

T

}
) = sup`≥1 K[J (`)(0)]. Since

|K(a)| = 1
b

J(a)
a |J ′(a)| ≤ 1

b for a ∈ [0, a0], this implies κ ≤ 1
b . Notice that for ferromagnetic

systems we get the stronger result that κ is bounded rather than just κ2. (κ2 ≤ κ always.)

This completes the proof of Theorem 5.25 for ferromagnetic systems.

Antiferromagnetic systems

For an antiferromagnetic system, the function J has all the properties described earlier for

the hard-core model, and we again refer to the function J2(a) ≡ J(J(a)). Specifically, the

two functions have the following properties:

1. J is continuous and decreasing on [0,∞), with 0 < J(0) = λ(1/λ(+))
b < ∞ and

J(∞) = λ(λ(−))
b ≥ 0.

2. J has a unique fixed point a0.

3. The derivatives of J alternate signs (the odd derivatives are negative).

4. J2 is continuous and increasing on [0,∞), with J2(0) = J(J(0)) > J(∞) ≥ 0 and

supa J2(a) ≤ J(0) < ∞.

5. a0 (the unique fixed point of J) is a fixed point of J2.

6. If the system admits a unique Gibbs measure then a0 is the unique fixed point of J2. If

there are multiple Gibbs measures then J2 has three fixed points a1 < a0 < a2, where

J(a1) = a2 and J(a2) = a1.

7. The derivative J ′2(a) is continuous. If a0 is the unique fixed point of J2 (the Gibbs

measure is unique) then J ′2(a0) ≤ 1. If there are three fixed points then J ′2(a0) > 1,

and J ′2(a) < 1 for a ∈ [0, a1]. Consequently, the system admits a unique Gibbs measure

if and only if |J ′(a0)| =
√

J ′2(a0) ≤ 1.
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Again, the connection with the uniqueness of the Gibbs measure stems from the fact that

the all-(+) and all-(−) are extreme configurations (though, as in the hard-core model, the

direction of the monotonicity depends on the parity of the depth of the tree).

We also observe that

J ′2(a) = J ′(J(a)) · J ′(a)

= b · J(J(a))

J(a)
· K(J(a)) · b · J(a)

a
· K(a)

= b2 · J2(a)

a
· K(J(a))K(a).

Now, part (i) of Theorem 5.25 (the uniqueness case) follows by the same argument used for

the ferromagnetic case, since |K(a0)| = 1
b |J ′(a0)| ≤ 1

b when the Gibbs measure is unique.

Part (ii) of Theorem 5.25 follows from the same arguments used for the hard-core model in

the non-uniqueness regime, once we notice that, as in the hard-core case, for η the all-(+)

configuration, κ ≡ κ(
{
µη

T

}
) = sup`≥1 |K[J(J

(`)
2 (0))]| · |K[J

(`)
2 (0)]|. This completes the proof

of Theorem 5.25 for antiferromagnetic systems.

5.3.4 Colorings

We now move on to consider systems with more than two spin values. The first such model

we consider is colorings (as defined in Example 2.4).

For colorings on the b-ary tree it is well known that, when q ≤ b + 1, there are

multiple Gibbs measures; this follows immediately from the existence of “frozen configura-

tions,” i.e., colorings in which the color of every internal vertex is forced by the colors of

the leaves (see, e.g., [BW02]). Recently it has been proved that, as soon as q ≥ b + 2, the

Gibbs measure is unique [Jon02].

The sharpest result known for the Glauber dynamics on colorings is due to Vigoda

[Vig00], who shows that for arbitrary boundary conditions the mixing time is O(m log n)

provided q > 11
6 (b + 1). This result actually holds not only for trees but for any n-vertex

graph G of maximum degree b + 1. For graphs of large maximum degree and girth at

least 6, this range was recently improved [DFPV04] to q > max {1.489(b + 1), q0}, where q0

is an absolute constant.4 Before we state our results for the Glauber dynamics on colorings,

4A recent sequence of papers [DF01, Mol02, Hay03] have reduced the required number of colors further

for general graphs, under the assumption that the maximum degree is Ω(log n). The current state of the art

requires q ≥ (1 + ε)(b + 1), for arbitrarily small ε > 0 [HV03], but these results do not apply in our setting

where the degree b + 1 is fixed.
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notice that the dynamics is connected for q ≥ b+3 (on any graph of maximum degree b+1,

as was mentioned in Section 2.3.1). For q ≤ b+1, there is at least one boundary condition η

for which the dynamics for µη
T is not connected. For the critical value q = b+2, the situation

is somewhat delicate: while the dynamics is connected for all boundary conditions when

run on T , it is not connected for at least one boundary condition if we add a boundary site

above T (i.e., if the dynamics is run on Tx for x not the root of T
b). Furthermore, even on T

the dynamics is not connected for some boundary condition, if we consider the version of T
b

in which the root has b+1 children (i.e., the Bethe lattice - see footnote 1 in Section 5.1.2).

Since our arguments apply equally well to these settings, the smallest q for which we can

hope to establish bounded csob uniformly in the boundary condition is q = b + 3. Indeed,

we establish this for the entire regime in which the Glauber dynamics is guaranteed to be

connected, i.e., for q ≥ b+3. We note that this is the first result that establishes this fact for

a non-trivial graph. (It has been conjectured that the dynamics mixes in O(m log n) time

for q ≥ b + 3 on any graph of maximum degree b + 1.) We also notice that, if the Glauber

dynamics is replaced by the heat-bath dynamics based on flipping edges (i.e., where the

collection of blocks is the edges of the tree), then the dynamics remains connected for

q = b + 2 and all subsets and boundary conditions. It is not too difficult to see that our

results below imply bounded csob uniformly in the boundary condition for this dynamics

even at the critical value q = b + 2. Thus, we essentially establish bounded csob uniformly

in the boundary condition throughout the uniqueness regime.

Theorem 5.27 For the colorings model with q colors on the b-ary tree, csob is bounded for

arbitrary boundary conditions provided q ≥ b + 3.

Our approach for proving Theorem 5.27 is similar to that we used previously for

the uniqueness regime of two-spin systems. Specifically, we show:

Theorem 5.28 For the colorings model with q colors, if the infinite-volume Gibbs measure is

unique then for every ε > 0 we have γ̂ ≤ 1
q−1 + ε (for a suitable choice d = d(ε) of the implicit

constant in γ̂).

Since in [Jon02] it was shown that the Gibbs measure is unique for all q ≥ b + 2, we

conclude that for these values of q, γ̂ ≤ 1
q−1 + ε < 1

b . Theorem 5.27 now follows from

Theorem 5.6′′ as usual.

Remarks:
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• The reader may wonder why the implication γ̂κ̂b < 1 ⇒ csob fails for the critical value q =

b + 2. Namely, a natural question to ask is: where in our framework developed in Section 5.2

did we use the assumption that the dynamics is connected? This assumption was in fact

used in (5.2), i.e., when we compared the local entropy in Bx,` to that at single sites, we

assumed that csob of the Glauber dynamics in the block Bx,` is bounded away from zero

uniformly in the boundary condition. Notice that the latter assumption does not hold if the

Glauber dynamics in Bx,` is not connected for some boundary configuration. This is because

csob(P ) = cgap(P ) = 0 for any disconnected Markov chain P .

• The fact that γ̂ < 1
b

even for the critical value q = b + 2 is what allows us to deduce bounded

csob for the edge dynamics mentioned above. This is because our general framework in Sec-

tion 5.2 can easily be extended to the edge dynamics. (All that needs to be changed is inequal-

ity (5.2) in which local entropy in Bx,` is translated to that at single sites, and the translation

should be to edges instead.)

• The fact that γ̂ < 1
b

means not only that the influence of any boundary configuration on the

spin at the root decays with the distance of the boundary from the root (as is already implied

by the fact the Gibbs measure is unique), but that it decays exponentially fast. This fact is of

independent interest, and to the best of our understanding was not obvious from the proof of

uniqueness given in [Jon02].

Proof of Theorem 5.28: The idea of the proof is the following. Consider a subset A, a

site y ∈ ∂A and z ∈ A, where z is a neighbor of y. Fix a disagreement at y, i.e., set two

different spins s1 and s2 at y. We wish to bound ‖µτy,s1

A − µτy,s2

A ‖z . Suppose now that,

without the condition at y, the color of z is equally likely to be any of the q possible colors

(as is the case when the boundary around A is “free”). Thus, the distribution of the color

of z in µτy,s1

A is uniform over the q − 1 colors other than s1, and in µτy,s2

A it is uniform over

the colors other than s2. We then get that ‖µτy,s1

A − µτy,s2

A ‖z = 1
q−1 , because we can couple

the two distributions such that spin s2 in µτy,s1

A is coupled with spin s1 in µτy,s2

A and the two

spins at z agree otherwise. (It is easy to see that this is the optimal coupling.) In our proof,

we use the hypothesis that the Gibbs measure is unique in order to approximate the Gibbs

distribution over A under any boundary configuration by the free boundary case, and hence

get that the variation distance is arbitrarily close (as a function of the implicit parameter d)

to 1
q−1 .

Let us proceed with the formal proof. Recall that in order to bound γ̂, we need

to consider a subset A that includes the full subtree of depth d rooted at z, and bound
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the variation distance maxs1,s2 ‖µτy,s1

A − µτy,s2

A ‖z for an arbitrary boundary configuration τ ,

where y is the (unique) neighbor of z in ∂A.

Now it is easy to see that, for the colorings model,

‖µτy,s1

A − µτy,s2

A ‖z = max{µτy,s1

A (σz = s2), µ
τy,s2

A (σz = s1)}.

This identity follows from an argument similar to that used above for the free boundary

case, as we now explain. Observe that, for every color s that differs from both s1 and s2,

µτy,s1

A (σz = s) =
1−µτy,s1

A (σz=s2)

1−µτy,s2
A (σz=s1)

· µτy,s2

A (σz = s). Hence, if µτy,s1

A (σz = s2) ≥ µτy,s2

A (σz = s1),

then µτy,s1

A (σz = s) ≤ µτy,s2

A (σz = s) for every s 6= s2, and so the event E = {σz = s2}
maximizes the expression |µτy,s1

A (E) − µτy,s2

A (E)| over all events E that only depend on σz.

As in the previous models we analyzed, it is now convenient to consider the distri-

bution induced by removing the edge from z to y (i.e., with a “free” condition at y). Recall

that this distribution is denoted µτy,∗

A . Let pz(s) = µτy,∗

A (σz = s), and notice that for the col-

orings model µτy,s1

A (σz = s2) = pz(s2)
1−pz(s1) simply because µτy,s1

A ( · ) = µτy,∗

A (· |σz 6= s1). Thus,

maxs1,s2 ‖µτy,s1

A − µτy,s2

A ‖z = maxs1,s2 µτy,s1

A (σz = s2) = maxs1,s2

pz(s2)
1−pz(s1)

.

To obtain the claimed bound on γ̂ we have to show that, for all sets A as above,

and all boundary configurations τ , maxs1,s2

pz(s2)
1−pz(s1)

≤ 1
q−1 +ε. It is at this point that we use

the assumption that the Gibbs measure is unique. This means that, if d (the depth of the

full subtree contained in A) is large enough, the distribution pz( · ) is arbitrarily close to the

uniform distribution, regardless of the boundary configuration τ . Thus, for every ε ′ > 0,

there exists a (large enough) constant d such that pz(s) ≤ 1+ε′

q for all colors s. Hence,

maxs1,s2

pz(s2)
1−pz(s1) ≤ 1+ε′

q−1−ε′ ≤ 1
q−1 + ε for some ε that goes to zero with d, as required.

5.3.5 The ferromagnetic Potts model

The last model we analyze is the (ferromagnetic) Potts model (as defined in Example 2.3).

Qualitatively the behavior of this model is similar to that of the Ising model, though less is

known in precise quantitative terms. Again there is a phase transition at a critical β = β0,

which depends on b and q, so that for β > β0 (and indeed for β ≥ β0 when q > 2)

there are multiple phases. This value β0 does not in general have a closed form, but it is

known [Hag96] that β0 < 1
2 ln( b+q−1

b−1 ) for all q > 2. (For q = 2, this value is exactly β0 for

the Ising model as quoted earlier.)
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Little is known about the Glauber dynamics for the Potts model on trees, beyond

the facts that the mixing time is O(m log n) for arbitrary boundaries at very high tempera-

tures (by the Dobrushin Uniqueness Condition), and is Ω(mnε) for some boundaries at very

low temperatures (combining results in [KMP01, MP01]). Here we prove:

Theorem 5.29 The Glauber dynamics for the Potts model on the b-ary tree has bounded csob

in all of the following situations:

(i) the boundary condition is arbitrary and β < max
{

β0,
1
2 ln(

√
b+1√
b−1

)
}

;

(ii) the boundary condition is constant (e.g., all sites on the boundary have spin 1) and β is

arbitrary;

(iii) the boundary condition is free (i.e., the boundary spins are unconstrained) and β < β1,

where β1 is the solution to the equation e2β1−1
e2β1+q−1

· e2β1−1
e2β1+1

= 1
b .

Part (i) of this theorem shows that we get bounded csob for arbitrary bound-

aries throughout the uniqueness region; also, since 1
2 ln(

√
b+1√
b−1

) ≥ 1
2 ln( b+q−1

b−1 ) > β0 when

q ≤ 2(
√

b+1), this result extends into the multiple phase region for many combinations of b

and q. Part (ii) of the theorem is an analog of our earlier result that in the Ising model csob

is bounded for the (+)-boundary at all temperatures. Part (iii) is of interest for two reasons.

First, since β1 > β0 always, it exhibits a natural boundary condition under which csob is

bounded beyond the uniqueness region (but not for arbitrary β) for all combinations of b

and q. Second, because of an intimate connection between the free boundary case and so-

called “reconstruction problems” on trees [Mos02] (in which the edges are noisy channels

and the goal is to reconstruct a value transmitted from the root), we obtain an alternative

proof of the best known value of the noise parameter under which reconstruction is impos-

sible [MP01] (i.e., the best known bound on the regime for which VM(`, ε) holds with ε

going to zero with `). As we observe later, a slight strengthening of part (iii) marginally

improves on this threshold.

The following theorem sets out the relevant properties of κ and γ from which we

deduce Theorem 5.29.

Theorem 5.30 For the Potts model with q colors at inverse temperature β the following hold:

(i) γ ≤ e2β−1
e2β+1

− δ, where δ = δ(b, q, β) ≥ 0 with equality if and only if q = 2. Furthermore,

δ(b, q, β) is increasing in q and decreasing in b and β. [The exact definition of δ(b, q, β)

is rather involved and given in the proof below.]
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(ii) If the Gibbs measure is unique (i.e., β < β0) then γ̂ ≤ e2β−1
e2β+q−1

+ ε < 1
b (for a small

enough ε that depends on the choice of d, the implicit constant in γ̂).

(iii) If the Gibbs measure is not unique and the boundary condition η is constant then κ ≡
κ(
{
µη

T

}
) ≤ 1

b .

(iv) If the boundary condition η is free then κ = e2β−1
e2β+q−1

.

Part (i) of Theorem 5.29 follows from parts (i) and (ii) of Theorem 5.30 and

the fact that for any boundary condition κ ≤ γ. Part (ii) of Theorem 5.29 follows from

parts (ii) and (iii) of Theorem 5.30 and the fact that γ < 1 (as is apparent from part (i)

of the same theorem). Finally, part (iii) of Theorem 5.29 follows from parts (i) and (iv) of

Theorem 5.30. In fact, in light of the bound on γ from part (i), the range of β in part (iii)

of Theorem 5.29 can be improved slightly by letting β1 be the solution to the equation

e2β1−1
e2β1+q−1

( e2β1−1
e2β1+1

− δ) = 1
b , where δ = δ(b, q, β) is as in part (i) of Theorem 5.30. We note

that this modified definition of β1 is only marginally larger than the original definition of β1

in Theorem 5.29, and we mention it only in order to show that we can go further than

the original threshold, a fact that is interesting due to its implication for the reconstruction

problem [Mos02] as mentioned above.

Proof of Theorem 5.30: Much as we did for the previously discussed models, the first

step we take in order to bound κ and γ is expressing the influence of a boundary spin as a

function of the distribution of its neighboring interior spin, when the boundary spin is free.

Generalizing Proposition 5.20 from the Ising model to the Potts model gives:

Proposition 5.31 For any subset A ⊆ T , any boundary configuration τ , any pair of spins

(s1, s2), any site y ∈ ∂A and any neighbor z ∈ A of y, we have

‖µτy,s1

A − µτy,s2

A ‖z = K(p(s1), p(s2)),

where p(s) = µτy,∗

A (σz = s) and the function K is defined by

K(p1, p2) = max

{
e2βp1

(e2β − 1)p1 + 1
− p1

(e2β − 1)p2 + 1
,

e2βp2

(e2β − 1)p2 + 1
− p2

(e2β − 1)p1 + 1

}
,

(5.25)

and we notice that K(p1, p2) is the first term in the maximum if and only if p1 ≥ p2.
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Proof: Let ps(s′) = µτy,s

A (σz = s′). Then ps(s) = e2βp(s)
e2βp(s)+1−p(s)

= e2βp(s)
(e2β−1)p(s)+1

, and for s′ 6=
s, ps(s′) = p(s′)

e2βp(s)+1−p(s)
= p(s′)

(e2β−1)p(s)+1
, by definition of the Potts model. Now, the proposi-

tion follows by noticing that ‖µτy,s1

A − µτy,s2

A ‖z = max {ps1(s1) − ps2(s1), p
s2(s2) − ps1(s2)}.

The reason for this equality is that if p1 ≥ p2 then ps1(s) ≤ ps2(s) for all s 6= s1 (and

ps1(s1) ≥ ps2(s1)), as a simple calculation verifies.

We can now easily dispense with parts (ii) and (iv) of Theorem 5.30. For part (iv)

we simply observe that, for η the free boundary condition, the distribution p(·) at the root of

the tree is uniform, i.e., p(s) = 1
q for all s, and therefore κ = K( 1

q , 1
q ) = e2β−1

e2β+q−1
, as required.

For part (ii), observe that when the Gibbs measure is unique the distribution of the spin at

the root of the tree converges as the depth increases to the uniform distribution, uniformly

in the boundary condition. Thus, if A includes the full subtree of depth d rooted at z then,

for every s, p(s) converges with d to 1
q , i.e., γ̂ ≤ K( 1

q +ε′, 1
q +ε′) = K(1

q , 1
q )+ε ≤ e2β−1

e2β+q−1
+ε

for some ε′ and ε that go to zero with d, as required. (Notice that the Gibbs measure is

unique in the regime β < β0, for which e2β−1
e2β+q−1

< 1
b .)

We go on to prove part (i). Here we have to consider an arbitrary boundary

configuration, and we cannot assume the distribution p(·) is close to uniform because the

bound should also apply when the Gibbs distribution is not unique. Thus, the approach we

take is simply calculating the maximum of K(p1, p2) over all possible distributions. As a first

step, let Kmax(a) = maxp1,p2 {K(p1, p2) : p1 + p2 = a} denote the maximum restricted to

distributions in which the sum of the two probabilities is a. We now observe that Kmax(a)

is strictly increasing in a. This is a consequence of the following two facts. First, K(p, p) is

strictly increasing in p. Second, for p1 > p2, K(p1, p3) > K(p1, p2) for every p3 ∈ (p2, p1].

We thus conclude that maxp1,p2 K(p1, p2) = Kmax(1) = maxp

{
e2βp

(e2β−1)p+1
− p

(e2β−1)(1−p)+1

}
.

It is now easy to verify that the expression in the maximization on the r.h.s. coincides

with Kβ defined for the Ising model in Proposition 5.20, under the change of variables p

to R = 1−p
p , and that this expression is maximized for p = 1

2 . We therefore conclude that

γ ≤ maxp1,p2 K(p1, p2) = K(1
2 , 1

2) = e2β−1
e2β+1

. Now, recall that in part (i) of Theorem 5.30

we claimed a sharper bound on γ for q > 2. Specifically, we claimed that we can improve

on the last bound by δ, where δ ≡ δ(b, q, β) increases in q and decreases in b and β. This

follows from the observation that, for all subsets A and boundary conditions τ , p1 and p2 in

Proposition 5.31 are such that p1 + p2 < 1, and hence, since Kmax(a) is strictly increasing

in a, K(p1, p2) < Kmax(1) = e2β−1
e2β+1

. The reason that p1+p2 < 1 is that, for any spin s, p(s) >
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0 for all subsets A and boundary conditions τ . In particular, p(s) > 1
e2β(b+1)+q−1

for every s,

i.e., p(s1) + p(s2) ≤ 1 − q−2
e2β(b+1)+q−1

. We thus conclude that γ ≤ Kmax(1 − q−2
e2β(b+1)+q−1

).

Since Kmax(a) increases with a, we observe that δ = Kmax(1) − Kmax(1 − q−2
e2β(b+1)+q−1

)

indeed increases with q and decreases with b and β.

We now go on to prove part (iii) of Theorem 5.30 (the last remaining part). Here

the boundary is constant. W.l.o.g. we assume it is all 1. In order to bound κ we need to

consider the distribution p(·) of the spin at the root of maximal subtrees with boundary

condition all 1 at the bottom. Notice that by symmetry, p(s) is uniform in s 6= 1. Therefore,

this distribution is completely specified by p(1) since for s 6= 1, p(s) = 1−p(1)
q−1 . As we shall

see below, the fact that the distribution at the root is one-parameter allows for an analysis

that is similar to that carried out for two-spin systems in Section 5.3.3.

To start, notice that by Proposition 5.31, ‖µ1
Tz

− µs
Tz
‖ = K(p(1), 1−pz(1)

q−1 ), where

we recall that µs
Tz

= µηy,s

Tz
, and where pz(s) = µηy,∗

Tz
(σz = s). Similarly, for s1, s2 both

different from 1, ‖µs1
T − µs2

T ‖ = K(1−pz(1)
q−1 , 1−pz(1)

q−1 ). We now observe that, since the system

is ferromagnetic, pz(1) ≥ 1
q for all z. An explicit calculation reveals that for every p ≥ 1

q ,

K(p, 1−p
q−1 ) ≥ K(1−p

q−1 , 1−p
q−1 ). Thus in order to bound κ, it is enough to bound K(pz(1),

1−pz(1)
q−1 )

for every z. It is now convenient to consider the ratio R = 1−p(1)
p(1) and define

K(R) ≡ K

(
p(1),

1 − p(1)

q − 1

)
=

e2β

e2β + R
− 1

( e2β+q−2
q−1 )R + 1

. (5.26)

Observe that κ = supT supz K(Rz). Thus, we need to show that this supremum is at most 1
b .

We now use the fact that the distribution at the root is one-parameter once again, this time

to recursively calculate Rz, as was done for two-spin systems. In particular, we notice that

Rz = (q − 1)
∏

w≺z F (Rw), where F (a) =
( e2β+q−2

q−1
)a+1

a+e2β . As in the two-spin case, we let

J(a) = (q − 1)[F (a)]b and observe that Rz = J (`)(0), where ` is the height of z. Notice that

the functions K(a) and J(a) as defined here correspond exactly to the same two functions,

defined for the two spin-system given by (λ, λ(−), λ(+)) = (q − 1, e2β+q−2
q−1 , e2β). In other

words, if we translate the spin 1 of the Potts model to (+) and any non-1 spin to (−), the

Potts model with all-1 boundary corresponds exactly to the above two-spin system with all-

(+) boundary. To get some intuition for this translation, notice that λ = q − 1 stems from

the fact that a (−)-spin represents q − 1 different spins (uniformly weighted) of the Potts

model. For the same reason, λ(−) = e2β+q−2
q−1 stems from the fact that, given a non-1 spin,

the interaction with another non-1 spin is composed of a fraction 1/(q − 1) times e2β (when
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the neighboring site is of the same Potts spin), and a fraction (q−2)/(q−1) times 1 (for the

interaction with the other q − 2 spins).

Given this correspondence, it is now clear that κ for the all-1 boundary in the Potts

model (the supremum over K(Rz) given above) is exactly κ for the all-(+) boundary in

the two-spin system. Thus, we can conclude the proof of Theorem 5.30 part (iii) by using

Theorem 5.25 (ii) for the two-spin system, once we show that non-uniqueness of the Gibbs

measure for the Potts model implies non-uniqueness of the Gibbs measure in the two-spin

system.

Now, if the Gibbs measure is not unique for Potts then, conditioned on the all-1

boundary configuration, the probability that the spin at the root is 1 is > 1/q for arbitrarily

large trees (since the model is ferromagnetic). This implies that in the two-spin system

the probability of (+) is > 1/q, which immediately implies non-uniqueness in this system

because a∗ = q − 1 is always a fixed point of the function J given above. (In fact, it

is not too difficult to see that the reverse implication holds as well, i.e., that the Gibbs

measure is unique for the Potts model with parameters (q, β) if and only if it is unique for

the corresponding two-spin system.)

We conclude that, for the Potts model in the regime of non-uniqueness of the

Gibbs measure and for a constant boundary configuration, κ ≤ 1
b . This completes the proof

of Theorem 5.30 part (iii).

5.3.6 General q-spin systems

We end this section with an open question. In Section 5.3.3 we saw that for any two-spin

system, if the Gibbs measure is unique then γ̂ ≤ 1
b + ε (and thus csob is bounded uniformly

in the boundary condition). In Sections 5.3.4 and 5.3.5, we saw that the same holds for

two examples of systems with q > 2 spins, where we used some symmetry of the systems to

show this. A natural question is whether the above is true for any spin system with a finite

spin space S. We conjecture this to be true:

Conjecture 5.32 For any q-spin system on the b-ary tree (where b and q are arbitrary), if the

system admits a unique Gibbs measure then γ̂ ≤ 1
b + ε, where ε goes to zero with the implicit

parameter d in the definition of γ̂; in particular, if the Glauber dynamics for the system is

connected then csob is bounded uniformly in the boundary condition.
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A possible direction for solving the above conjecture is analyzing the multivariate

recursion for the distribution at the root of the tree. It is reasonable to expect that the total

variation distance in γ̂ can be expressed in terms of the derivative of the function defining

the recursive step, if the derivative is taken along an appropriate direction. Furthermore, we

believe this derivative to “behave well” when the Gibbs measure is unique because the latter

expresses a form of “attractiveness” of the fixed-point, where here a point is a probability

vector.
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Chapter 6

Boundary-specific mixing on the

square integer lattice

In this chapter we investigate a few possible directions for establishing rapid (i.e., polyno-

mial in the volume n) mixing time of the Glauber dynamics for specific boundary condi-

tions by appealing to certain spatial mixing properties of the Gibbs distribution conditioned

on these boundary configurations; in Chapter 5 we did this for systems on trees (where

O(m log n) mixing time for specific boundary conditions was established), and here our we

focus on the square lattice Z
2. Our main motivation is the classical Ising model at low

temperature with the all-(+) boundary condition. As we already discussed in Section 5.1.1,

the mixing time in this setting is conjectured to be bounded by a fixed polynomial at all

temperatures, but no rigorous proof of this is known. The discussion in this chapter sheds

more light on the problem and suggests a few possible directions towards solving it.

Our discussion of mixing in time in this chapter is focused on cgap. Recall that by

Theorem 2.9 (i), the mixing time is bounded by O(mn · c−1
gap). Also, it is standard (and easy

to see) that c−1
gap is bounded by the mixing time (normalized by m). Hence, mixing time

bounded by a fixed polynomial in n is equivalent to cgap bounded below by a fixed inverse

polynomial in n (though of course these polynomials will be different).

The rest of the chapter is organized as follows. In Section 6.1 we set the context

for our discussion by giving a detailed review of the state-of-the-art of the Ising model at

low temperatures with (+)-boundary, for mixing in both time and space. In Section 6.2 we

describe the general framework that the theory in this chapter is based on. This framework
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is essentially the theory of variance decomposition discussed in Appendix A.2 and its rela-

tionship to cgap. In Section 6.3 we present and prove a correspondence between mixing in

time (“large” cgap) and mixing in space that is boundary specific and holds in any bipartite

graph. The spatial mixing condition we present in this section is new, and expresses the

property that correlations between the “odd” and “even” subsets are “not too strong”. Al-

though we are not sure of the extent to which this condition is useful (i.e., how easy it is to

verify it), it serves the purpose of establishing a two-way correspondence between mixing

in time and space that is specific to the boundary condition. In Section 6.4 we specialize

the discussion to the square lattice, where the geometry (essentially its planarity) allows for

a correspondence between cgap and a more relaxed spatial mixing condition. The relaxed

condition expresses the property that correlations between two subsets at distance O(log n)

from each other are not too strong. This latter condition seems more promising, since an

appropriate decay of correlations implies it. However, this condition is still stronger than

the decay of correlations that is currently known to take place on the square lattice at low

temperatures with (+)-boundary condition. We elaborate on this point in the final Sec-

tion 6.5, where we put the theory presented in Sections 6.3 and 6.4 in the context of the

known and conjectured properties of the Ising model with (+)-boundary at low temper-

atures, and where we discuss future directions suggested by this theory for resolving the

above conjecture.

6.1 The Ising model at low temperatures with (+)-boundary con-

dition

In this section we describe some known facts concerning the Ising model on Z
2 at low

temperatures and conditioned on the all-(+) boundary condition. This setting was already

discussed in Section 5.1.1, but here we go into further detail.

Recall that the Ising model on Z
2 has a critical inverse temperature βc such that

the Gibbs measure is unique if and only if β ≤ βc. Here we consider the case β > βc, where

multiple Gibbs measures exist and, in particular, the all-(+) and all-(−) boundary conditions

yield significantly different Gibbs distributions. As already mentioned in Section 5.1.1, the

mixing time of the Glauber dynamics in a square of volume n with the free-boundary con-

dition is exp[Θ(
√

n)]. (This follows from the fact that cgap = exp[−Θ(
√

n)] [CGMS96].)
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We recall that the small cgap in the free-boundary case is due to the bi-modal shape of the

Gibbs distribution, where w.h.p. there is a majority of either (+)-spins or (−)-spins, and the

probability of balanced configurations is exponentially small (in fact, exp[−Θ(
√

n)]). Since

conditioning on the all-(+) boundary eliminates the (−)-phase and hence this bottleneck,

it has been conjectured (e.g., in [Mar98, FH87]) that with the all-(+) boundary, the mixing

time of the Glauber dynamics should remain bounded by a fixed polynomial at all temper-

atures. This captures the intuition that the above bottleneck is the only obstacle for fast

mixing of the Glauber dynamics. However, formalizing this intuition has so far proved to

be very elusive.

We go on to describe some of the currently known facts regarding the Ising model

with (+)-boundary at low temperatures. We start with the Gibbs distribution. It is known

([Dob96], and also [GHM01]) that the Gibbs distribution conditioned on the all-(+) bound-

ary exhibits exponential decay of correlations as in Definition 2.5. Specifically, for all β > βc,

there exist constants C and α > 0 depending only on β such that, for any two functions fA

and gB that depend only on A and B respectively, for every Ψ that includes A∪B, and for η

the all-(+) configuration,

Covη
Ψ(fA, gB) ≤ C min {|A|, |B|} |fA,max − fA,min||gB,max − gB,min| exp[−α · dist(A,B)],

(6.1)

where f ′max and f ′min stand for the maximum and minimum values of a function f ′ respec-

tively. This exponential decay of correlations is another reason for the mixing time conjec-

ture, since as we have seen throughout this thesis, mixing in time and mixing in space are

intimately related.

We conclude the section with known results regarding the mixing time in the above

setting. It is known that the mixing time for the all-(+) boundary is faster than for the free

boundary, but the improved bound is still exponential in a power of n. Specifically, it is

known [HW99] that cgap for the all-(+) boundary is bounded below by exp[−n1/4(log n)2].

In terms of lower bounds, on integer lattices of any dimension d the mixing time for β >

βc(d) and any boundary condition is clearly Ω(mn1/d). The reason is that if the mixing time

for some boundary condition were o(mn1/d), then it would follow from arguments similar to

those given in Chapter 4 that the Gibbs measure is unique, a contradiction. (The uniqueness

of the Gibbs measure follows from Lemma 4.4 in a similar manner to that used in the proof

of Theorem 4.6, i.e., if the mixing time is o(mn1/d), then there is not enough time for the



141

spin at the origin to be affected by the boundary condition.) Upper bounds on cgap and csob

(and hence lower bounds on the mixing time) for the all-(+) boundary were recently given

in [BM02]. Specifically, it was shown that in two dimensions cgap = Õ(n−1/2) (where Õ(·)
hides factors polylogarithmic in n), and that in all dimensions d ≥ 2, csob = Õ(n−2/d). These

bounds are conjectured to be tight, and in particular, it is conjectured that cgap = Θ(n−1/2)

in two dimensions for all β > βc, and cgap = Θ(1) in dimensions three and higher at all

temperatures.

6.2 The general framework

Throughout this chapter the only dynamics we discuss is Glauber (i.e., updates are made

to single sites), and we do this by analyzing the spectral gap of the dynamics. Thus, as

in Chapter 5, we write cgap(µη
Ψ) for cgap(P ), where P is the Glauber dynamics for sam-

pling from µη
Ψ. Our approach is based on the theory of variance decomposition given in

Appendix A.2. Consider two subsets A,B such that A ∪ B = Ψ. In Appendix A.2 we define

the quantity

V{A,B} = inf
f

µη
Ψ[VarA(f)] + µη

Ψ[VarB(f)]

Varη
Ψ(f)

,

where the infimum is over non-constant functions f . As discussed in Appendix A.2, V{A,B}

(which measures the well-decomposition of variance into the sum of conditional variance

in A and B) is related to lack of correlations in the Gibbs distribution µη
Ψ, between the

configurations on A \ B and B \ A respectively. The measure for correlations between two

non-intersecting subsets A,B given in the same appendix is

C{A,B} = sup
fA,gB

Covη
Ψ(f, g)2

Varη
Ψ(fA)Varη

Ψ(gB)
,

where the supremum is over non-constant functions fA and gB that depend only on A

and B respectively. Notice that C{A,B} is at most 1, and that the smaller C{A,B} is, the less

correlated are the configurations on A and B. (See Appendix A.2.) Theorem A.4 in the

same appendix establishes a correspondence between V{A,B} and C{A\B,B\A} that we will

use throughout this chapter, i.e, the content of our spatial mixing conditions will be that

C{A\B,B\A} is “not too close” to 1 for a certain pair of subsets A,B that cover Ψ, and this

corresponds to V{A,B} being “not too close” to 0.
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Bounding V{A,B} is relevant for cgap of the Glauber dynamics because of the fol-

lowing standard bound (e.g., [Mar98]), the derivation of which we repeat here for com-

pleteness. For any two subsets A,B such that A ∪ B = Ψ,

cgap(µη
Ψ) = inf

f

∑
x∈Ψ µη

Ψ[Var{x}(f)]

Varη
Ψ(f)

= inf
f

µη
Ψ[VarA(f)] + µη

Ψ[VarB(f)]

Varη
Ψ(f)

·
∑

x∈Ψ µη
Ψ[Var{x}(f)]

µη
Ψ[VarA(f)] + µη

Ψ[VarB(f)]

≥ V{A,B} · 1
2 inf

f

∑
x∈A µη

Ψ[Var{x}(f)] +
∑

x∈B µη
Ψ[Var{x}(f)]

µη
Ψ[VarA(f)] + µη

Ψ[VarB(f)]

= 1
2V{A,B} · inf

f

µη
Ψ[µA[

∑
x∈A Var{x}(f)]] + µη

Ψ[µB [
∑

x∈B Var{x}(f)]]

µη
Ψ[VarA(f)] + µη

Ψ[VarB(f)]

≥ 1
2V{A,B} · inf

f
min

{
min

τ

∑
x∈A µτ

A[Var{x}(f)]

Varτ
A(f)]

,min
τ

∑
x∈B µτ

B[Var{x}(f)]

Varτ
B(f)]

}

≥ 1
2V{A,B} · min

{
min

τ
cgap(µτ

A),min
τ

cgap(µτ
B)
}

, (6.2)

where in the minimum over τ , the latter is restricted to be a configuration in the support

of µη
Ψ. Notice that the factor 1

2 is only necessary if A and B overlap, and can be omitted if A

and B are a partition of Ψ.

Following (6.2), in order to bound cgap(µη
Ψ) it is enough to bound V{A,B} and

min {minτ cgap(µτ
A),minτ cgap(µτ

B)}. A bound on V can be obtained as described above

using a spatial mixing assumption; specifically, since by Theorem A.4(ii) V{A,B} ≥ (1 −
C{B\A,A\B})2, then by plugging this bound into (6.2) we get

cgap(µη
Ψ) ≥ 1

2(1 − C{B\A,B\A})
2 min

{
min

τ
cgap(µτ

A),min
τ

cgap(µτ
B)
}

. (6.3)

Thus, if we can bound min {minτ cgap(µτ
A) , minτ cgap(µτ

B)}, a bound on cgap in terms of C
will follow. In scenarios where the spatial mixing holds uniformly in the boundary condi-

tion, this minimum can be bounded by recursively applying (6.2), i.e., cgap(µτ
A) is recur-

sively bounded by considering two subsets A′, B′ such that A′ ∪ B′ = A, and such that

C{A′\B′ ,B′\A′} is small, where C is w.r.t. the Gibbs distribution µτ
A. This approach was taken

in, e.g., [BCC02, Ces01, DPP02], to obtain bounded cgap and csob uniformly in the bound-

ary condition under a strong spatial mixing assumption for systems on the integer lattice.

Notice, however, that recursive arguments of this type require that the spatial mixing as-

sumption hold for arbitrary boundary conditions τ , while we are interested in deriving a

bound on cgap assuming spatial mixing only for the specific boundary configuration η. Thus,
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rather than continuing recursively, we will work with subsets A,B for which there are “good

enough” direct bounds on cgap(µτ
A) and cgap(µτ

B), uniformly in τ .

We conclude this section with the observation that bounds in the reverse direction

to (6.2) and (6.3) exist; namely, that VA,B and CB\A,A\B are bounded in terms of cgap(µη
Ψ).

This follows from the fact that VarA(f) ≥ Var{x}(f) for every function f and x ∈ A (see,

e.g., (A.1) in the appendix). Thus,

V{A,B} = inf
f

µη
Ψ[VarA(f)] + µη

Ψ[VarB(f)]

Var(f)

≥ inf
f

∑
x∈A µη

Ψ[Var{x}(f)] +
∑

x∈B µη
Ψ[Var{x}(f)]

max {|A|, |B|}Var(f)

≥ n−1cgap(µη
Ψ) , (6.4)

where n = |Ψ|. Notice that by Theorem A.4(i), (6.4) yields

C{A\B,B\A} ≤ 1 − n−1cgap(µη
Ψ) . (6.5)

We note that if cgap is bounded and if dist(A \ B , B \ A) is large w.r.t. min {|A|, |B|}, then

a much better bound exists. Specifically, in [KMP01] it was shown that

C{A\B,B\A} ≤ C min {|A|, |B|} exp[−ϑcgap(µη
Ψ)dist(A \ B , B \ A)] (6.6)

for some constants C and ϑ > 0 that depend only on the potentials of the system and the

maximum degree of G. However, the bound in (6.6) is non-trivial only if cgap(µη
Ψ) · dist(A \

B , B\A) ≥ Ω(log(C min {|A|, |B|})). For example, the bound is trivial if cgap(µη
Ψ) = o(n−1).

The advantage of the bound in (6.5) is that it is always non-trivial.

6.3 A boundary-specific space-time correspondence for bipartite

graphs

In this section we consider spin systems on bipartite graphs G = G1 ∪ G2, and prove a

two-way correspondence between cgap of the Glauber dynamics and correlations between

odd and even sites in the Gibbs distribution. Our arguments are based on the trivial ob-

servation that, conditioned on the configuration on the odd (respectively, even) sites, the

Gibbs distribution on the even (respectively, odd) sites is the product of its marginals over

single sites, where by “even” and “odd” we mean sites in G1 and G2 respectively. Our rather

simple result reads as follows:
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Theorem 6.1 Consider an arbitrary Ψ and boundary condition η, and let Ψ1,Ψ2 be the par-

tition of Ψ into even and odd sites respectively. Then,

(i) cgap(µη
Ψ) ≥ (1 − C{Ψ1,Ψ2})

2;

(ii) C{Ψ1,Ψ2} ≤ 1 − n−1cgap(µη
Ψ).

Notice that this is a correspondence between a spatial mixing notion (C{Ψ1,Ψ2}) that depends

only on the distribution µη
Ψ, and a temporal mixing notion (cgap(µη

Ψ)) that depends only on

the same distribution. In particular, an immediate consequence of Theorem 6.1 is that

cgap(µη
Ψ) is bounded below by an inverse polynomial in n if and only if CΨ1,Ψ2 is bounded

away from 1 by an inverse polynomial in n.

Proof: Part (ii) is just a special case of (6.5). Part (i) will follow from (6.3) once we

show that cgap(µτ
Ψi

) = 1 for all τ and i = 1, 2. (Notice that we omitted the factor 1
2

from (6.3) because Ψ1,Ψ2 is a partition of Ψ.) Now, observe that for every τ and i = 1, 2,

the distribution µτ
Ψi

is the product of its marginals over single sites (since the sites in Ψi

are isolated once the spins in the other part are fixed), and hence cgap(µτ
Ψi

) = 1. The

fact that cgap = 1 for product distributions is standard (e.g., [Sal97]) and was already

mentioned in Section 5.2.1, where we used the fact that for a product distribution µτ
Λ,

variance decomposes perfectly into the sum of conditional variances in any partition of Λ.

Remark: The fact that cgap = 1 for a product distribution µτ
Λ can also be proven by applying (6.3)

recursively, and by noticing that C{A,B} = 0 for any partition A, B of Λ when µτ
Λ is a product

distribution (and again recalling that the factor 1
2 in (6.3) is not needed if the two subsets do not

overlap).

6.4 A boundary-specific correspondence for the square lattice

In this section we continue the theme started in the previous section and establish a corre-

spondence between C{A\B,B\B} and cgap for a certain choice of the subsets A,B. Recall that

in Theorem 6.1, the subsets A,B are the odd and even subsets respectively, and the distance

between (A \ B) = A and (B \ A) = B is 1. We would like to establish a correspondence

of this type where the distance between A \ B and B \ A is larger, in the hope that this will
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make it easier to establish a small C{A\B,B\A}. In this section we indeed consider pairs of

subsets with a larger distance between them, but our discussion is restricted to the square

lattice Z
2, whose geometry (in particular, planarity) allows for an appropriate choice of the

subsets A,B.

Fix an arbitrary Ψ ⊂ Z
2. For every positive integer `, let

A` =
{
x = (x1, 2a`) ∈ Z

2 : x1, a ∈ Z, x ∈ Ψ
}

;

B` =
{
x = (x1, (2a + 1)`) ∈ Z

2 : x1, a ∈ Z, x ∈ Ψ
}

denote the intersections with Ψ of the sets of lines at even and odd multiples of ` respec-

tively. Set A` = Ψ\A` and B` = Ψ\A`. Clearly, for every `, (A` ∪B`) = Ψ. Notice also that

A` \ B` = Ψ \ B` = B`. Similarly, B` \ A` = A`. We establish the following correspondence

between cgap and C{A`,B`} for systems on Z
2:

Theorem 6.2 There exists a constant ϑ > 0 depending only on the potentials of the system

such that, for every region Ψ ⊂ Z
2, any boundary configuration η and all `:

(i) cgap(µη
Ψ) ≥ (1 − CA`,B`

)2n−1e−ϑ`;

(ii) CA`,B`
≤ 1 − n−1cgap(µη

Ψ),

where CA`,B`
is defined w.r.t. µη

Ψ and n = |Ψ|.

Notice that dist(A`,B`) = `, i.e., CA`,B`
is a measure of correlations between subsets at

distance ` from each other. Thus, the condition in the above theorem is flexible enough to

consider situations where correlations decay with distance, but a certain minimum distance

is required to see this effect. In particular, it follows from the theorem that if CA`,B`
is

bounded away from 1 by an inverse polynomial (in n) for some ` = O(log n), then cgap is

bounded below by an inverse polynomial.

Proof: Part (ii) is again just a reiteration of (6.5) and the only reason for stating it is

for the correspondence to read in both directions. For part (i) we once again use (6.3),

and thus it is enough to show that max
{
maxτ cgap(µτ

A`
) , maxτ cgap(µτ

A`
)
}

≥ n−1e−ϑ`, for

some constant ϑ > 0 that depends only on the potentials of the system. We will show

only that cgap(µτ
A`

) ≥ n−1e−ϑ` for every τ since the argument for B` is identical. The

main observation we use is that A` is a disjoint union of clusters A`,i, where each A`,i is a

region of width 2` − 1, delimited by the lines at even multiples of `. (Each A`,i is isolated
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from the rest of the clusters — see figure 6.1.) It is standard that cgap of a finite union

of isolated clusters is the least cgap of a single cluster, i.e., cgap(µτ
A`

) = mini cgap(µτ
A`,i

).

(This follows from the fact that the Gibbs distribution µτ
A`

is the product of its marginals

over the clusters A`,i.) We thus go on to bound cgap(µτ
A`,i

). Now, it is well known (see,

e.g., [Mar98]) that there exists a constant ϑ′ > 0 depending only on the potentials of the

system such that, for every subset Λ of width b and any τ , cgap(µτ
Λ) ≥ |Λ|−1e−ϑ′(b+1). This

follows from a flow along canonical-paths argument [Sin92] and the fact that the “cut-

width” of Λ is at most b + 1, i.e., there exists an enumeration x1, . . . , x|Λ| of the sites in Λ

such that, for every j, the number of edges connecting the two subsets {x1, . . . , xj} and
{
xj+1, . . . , x|Λ|

}
is at most b + 1. (See [Mar98] for details.) We conclude that, for every τ

and i, cgap(µτ
A`,i

) ≥ |A`,i|−1e−ϑ′2` ≥ n−1e−2ϑ′`, and therefore cgap(µτ
A`

) ≥ n−1e−2ϑ′` for

every τ , completing the proof of part (i).

Al,i

Bl,i

} }} }}

} } } } }}

Figure 6.1: The regions A` and B` are composed of the clusters A`,i and B`,i respectively.

The clusters A`,i (respectively, B`,i) are separated by the lines at even (respectively, odd)

multiples of `.
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6.5 The theory in the context of the Ising model on Z
2

In this section we compare the decay of correlations that is known to take place in the

Ising model on Z
2 at low temperatures with all-(+)boundary condition, to the conditions

on correlations that, by Theorems 6.1 and 6.2, would imply cgap inverse polynomial in n.

As mentioned in Section 6.1, it is known that the Ising model in this setting ex-

hibits the exponential decay of correlations specified in (6.1). Notice that this does not

give any information on the correlations between the odd and even subsets C{Ψ1,Ψ2} in The-

orem 6.1 because the distance between the two subsets is 1 and their size is order of n.

We will discuss future directions for research involving C{Ψ1,Ψ2} at the of the section; for

now let us proceed with relating the decay of correlations expressed in (6.1) to C{A`,B`} in

Theorem 6.2. As discussed immediately after that theorem, in order to lower bound cgap

by an inverse polynomial in n, it is enough to show that C{A`,B`} is bounded away from 1

by an inverse polynomial in n for some ` = O(log n). (This is also a necessary condition.)

Now, for two subsets A,B separated by a distance Ω(log(min {|A|, |B|})) = Ω(log n), (6.1)

(the decay that is known to take place) gives non-trivial bounds for functions whose L∞

norm is on the order of their L2 norm. Indeed, if we could replace the L∞ normalization on

the r.h.s. of (6.1) with an L2 normalization (i.e., replace |fA,max − fA,min||gB,max − gB,min|
with

√
Varη

Ψ(f)Varη
Ψ(g) ) then it would follow that CA`,B`

is bounded away from 1 for some

` = O(log n), and hence that cgap is bounded below by an inverse polynomial in n. We also

mention that (6.1) implies

Covη
Ψ(fA, gB) ≤ C

√
Varη

Ψ(fA)Varη
Ψ(gB) exp[α1 min {|A|, |B|} − α2 · dist(A,B)], (6.7)

once we notice that the minimum non-zero probability of a configuration on A is at least

inverse exponential in |A|. However, (6.7) gives non-trivial bounds only for A,B such that

dist(A,B) = Ω(min {|A|, |B|}), i.e., it gives non-trivial bounds on C{A`,B`} only for ` = Ω(n),

which is much larger than the ` we need to work with.

We summarize the above discussion with the observation that cgap bounded below

by an inverse polynomial in n would follow from the following form of exponential decay

of correlations:

Covη
Ψ(fA, gB) ≤ poly(|A|, |B|)

√
Varη

Ψ(fA)Varη
Ψ(gB) exp[−α · dist(A,B)], (6.8)

for some constant α > 0 that depends only on β and for any two functions fA and fB that
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depend only on the configurations on A and B respectively. Thus, one suggested direction

for future research is establishing (6.8) for large β (low temperatures) and η all-(+).

We also mention that, from the above discussion, it is apparent that the constants

Cf in Definition 2.5 of exponential decay of correlations play a crucial role. As already

mentioned, for the Ising model on Z
2 at low temperatures with η all-(+) this decay holds

with an appropriate choice of constants as expressed in (6.1). We now show that this kind

of exponential decay of correlations does not hold in the same setting for other choices of

the constants Cf . Specifically, we show that the decay does not hold for Cf = C
√

Varη
Ψ(f),

where C is an arbitrary constant uniform in f . (Notice that this Cf does not depend on

the size of the subset that f depends on.) Suppose for the sake of contradiction that, for

any two non-intersecting subsets A,B and any pair of functions fA, gB that depend only A

and B respectively,

Covη
Ψ(fA, gB) ≤ C

√
Varη

Ψ(fA)Varη
Ψ(gB) exp[−α · dist(A,B)], (6.9)

for every Ψ ⊇ A∪B, η all-(+) and for some constants C and α > 0 that depend only on β. It

then follows that C{A`,B`} < 1 uniformly in Ψ for some constant ` (independent of n = |Ψ|).

Now, for ` bounded, it is not too difficult to obtain a strengthening of Theorem 6.2(i), where

the factor n−1 is omitted. Hence, C{A`,B`} < 1 for a bounded ` implies that cgap is bounded

for η, a contradiction. (Recall from Section 6.1 that it is known [BM02] that, on Z
2, cgap is

not bounded for η all-(+) at low temperatures.) The above strengthening of Theorem 6.2(i)

follows from the fact that cgap(µτ
A`

) is bounded independently of n if ` is bounded. This

is because the clusters A`,i in the proof of this theorem are then of bounded width, i.e.,

essentially one-dimensional, and since cgap is always bounded for one-dimensional subsets.

We conclude the section with another suggestion for future research. The first

suggestion we made was to establish (6.8) in the setting of the Ising model on Z
2 with all-

(+)boundary at low temperatures. Notice that (6.8) is not necessary for cgap to be inverse

polynomial in n. In fact, some researchers believe (6.8) is false because cgap is not bounded

in the above setting. (Currently, of course, there is no formal proof either way.) However,

as is apparent from Theorems 6.1 and 6.2, there are other conditions on C that are not only

sufficient for cgap to be bounded below by an inverse polynomial, but are also necessary.

Therefore, establishing these conditions on C is a natural direction for future research. More

specifically, notice that cgap = Ω(poly−1(n)) is equivalent to C{Ψ1,Ψ2} bounded away from 1

by an inverse polynomial in n (Theorem 6.1), and to C{A`,B`} similarly bounded for some
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` = O(log n). This suggests a need for new tools for establishing a much more delicate form

of “weak” correlations, where “weak” actually means “not too strong”, and in particular,

for establishing C{A,B} ≤ 1 − poly−1(|A|, |B|) even if the distance between A and B is

small. The current tools are much coarser, and only capable of establishing that C{A,B} goes

to zero with dist(A,B), i.e., for large distances they give much stronger bounds, but no

information for small distances. To put our suggestion in a broader context, we mention

that it is not too difficult to see that C{A,B} ≤ 1 − exp[−C min {|∂A|, |∂B|}] for any pair of

non-intersecting subsets A,B, where C is a constant that depends only on the potentials of

the system and the maximum degree of the underlying graph G. This follows from the fact

that |g{A,B}|∞ ≤ 1− exp[−C min {|∂A|, |∂B|}], where |g{A,B}|∞ is defined in Appendix A.3.

We refer to [Mar98] for a derivation of a similar bound.
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Appendix A

Decomposing variance and entropy

In this appendix we give a detailed discussion of decompositions of variance and entropy

respectively, and in particular, of intimate relationships between these decompositions and

lack of correlations in the Gibbs distribution. Relationships of this kind were used in the

text, and here we give the proofs and references to previous results of this kind. Some of

the theorems we give here were not used in the text; the reason for presenting them is to

exhibit this decomposition theory in full, both because it helps in understanding the parts

that were needed in the text, and because it might be useful for future research.

The discussion here is based on general notions from functional analysis one, and

in fact holds in more general settings than spin systems, i.e., the analysis is of variance

and entropy w.r.t. general distributions that are “close” to being product distributions in an

appropriate sense.

Throughout the appendix we have a fixed distribution ν = µη
Ψ in mind. We also

consider the distribution on subsets A and B of Ψ. Namely, we write νA ≡ µA for the

conditional distribution in A. We abbreviate Varη
Ψ(f) and Entη

Ψ(f) to Var(f) and Ent(f)

respectively. We retain the original notation Varτ
A(f) (respectively Entτ

A(f)) when referring

to the variance (respectively entropy) in a subset A of Ψ conditional on τ outside A, and as

usual, VarA(f) (respectively EntA(f)) is the function representing the conditional variance

(respectively entropy) of f in A. Since we consider Ψ to be fixed, we write A ≡ Ψ \ A for

the complement of A in Ψ.

The rest of this appendix is organized as follows. We start by describing (and prov-

ing) a few basic properties of variance and entropy that are commonly used in our analysis.

We then move on to establish specific relationships between lack of correlations in the dis-
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tribution ν and closeness of the approximation of variance and entropy by a decomposition

into local conditional terms.

A.1 Basic properties of variance and entropy

In this section we list (and prove for completeness) a few basic properties that are common

to variance and entropy, and are useful for the rest of the discussion in this appendix.

We start with a trivial decomposition of the variance into the local conditional

variance in a subset A and the variance of the projection outside A.

Proposition A.1 For every function f : Ω → R,

Var(f) = ν[VarA(f)] + Var[νA(f)]. (A.1)

The same holds when replacing Var with Ent and restricting to non-negative f .

Proof: For variance:

ν[VarA(f)] + Var[νA(f)] = ν[νA(f2) − νA(f)2] + ν[νA(f)2] − ν[νA(f)]2

= ν[νA(f2)] − ν[νA(f)]2

= ν(f2) − ν(f)2 = Var(f).

For entropy:

Ent(f) = ν

[
f log

(
f

ν(f)

)]

= ν

[
f log

(
f

νA(f)

)]
+ ν

[
f log

(
νA(f)

ν(f)

)]

= ν [EntA(f)] + ν

[
νA(f) log

(
νA(f)

ν(f)

)]

= ν[EntA(f)] + Ent[νA(f)].

Our second observation is that variance (respectively entropy) w.r.t. a fixed distri-

bution is a convex functional.

Proposition A.2 For every convex combination
∑k

i=1 λi = 1 and k functions f1, . . . , fk,

Var

(
k∑

i=1

λifi

)
≤

k∑

i=1

λiVar(fi). (A.2)

The same holds when replacing Var with Ent and restricting to non-negative functions fi.
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Proof: We first prove for Var:

Var

(
k∑

i=1

λifi

)
= ν



(

k∑

i=1

λifi − ν

(
k∑

i=1

λifi

))2



= ν



(

k∑

i=1

λi(fi − ν(fi))

)2



≤ ν

[
k∑

i=1

λi(fi − ν(fi))
2

]

=

k∑

i=1

λi ν
[
(fi − ν(fi))

2
]

=

k∑

i=1

λiVar(fi),

where the inequality is Cauchy-Schwartz. We go on to prove this for entropy. Let αi =

λiν(fi)/[
∑k

i=1 λiν(fi)], and notice that
∑k

i=1 αi = 1. Then,

Ent

(
k∑

i=1

λifi

)
= ν

[
k∑

i=1

λifi log

( ∑k
i=1 λifi

ν(
∑k

i=1 λifi)

)]

=

(
k∑

i=1

λiν(fi)

)
· ν
[(

k∑

i=1

αi
fi

ν(fi)

)
log

(
k∑

i=1

αi
fi

ν(fi)

)]

≤
(

k∑

i=1

λiν(fi)

)
· ν
[

k∑

i=1

αi
fi

ν(fi)
log

(
fi

ν(fi)

)]

= ν

[
k∑

i=1

λifi log

(
fi

ν(fi)

)]

=
k∑

i=1

λiEnt(fi),

where the inequality uses the fact that x log x is a convex function.

We are now going to use the above convexity property to prove inequality (5.5)

from Section 5.2.1. Although we do not need this inequality for the rest of the discussion

in this appendix, we place the proof here because it expresses a certain decomposition

property, and is based on a product structure of the Gibbs distribution, i.e., the fact that the

distribution in A depends only on the configuration in ∂A, and is independent of the rest

of the configuration once the boundary condition is fixed. (This is the only place in this

appendix where the Markovian structure of the Gibbs distribution is used.)
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Proposition A.3 For any two subsets A,B ⊆ Ψ such that (∂A) ∩ B = ∅, and for any func-

tion f ,

ν[VarA(νB(f))] ≤ ν[VarA(νA∩B(f))]. (A.3)

The same holds when replacing Var by Ent and restricting to non-negative f .

Proof: We only prove the Var formulation because the only property of Var that we use in

the proof is its convexity, which holds for Ent as well. First, for any function g and boundary

configuration τ we have

Varτ
A[νB\A(g)] ≤ ντ

B\A[VarA(g)], (A.4)

as we now explain. Recall that by assumption (∂A)∩B = ∅, so there are no edges connect-

ing the two disjoint subsets A and B \ A. Therefore, the distribution νB\A does not depend

on the configuration in A, and νA does not depend on the configuration in B \ A. Thus, if

we fix the configuration outside A to be τ , then νB\A(g) (a function only of the spins in A)

can be written as

νB\A(g) =
∑

σ

ντ
B\A(σ)gσ ,

where gσ is g with the spins on B \ A fixed to σ. Note that this is a convex combination of

functions gσ. Therefore, we may use the fact that variance w.r.t. a fixed measure is a convex

functional, together with the fact that the measure νA does not depend on the configuration

on B \ A, to deduce

Varτ
A[νB\A(g)] ≤

∑

σ

ντ
B\A(σ)Varτ

A(gσ) = ντ
B\A[VarA(g)],

thus verifying (A.4).

Finally, equation (A.3) follows from (A.4) with g = νB∩A(f) by writing

ν[VarA(νB(f))] = ν[VarA(νB\AνB∩A(f))]

≤ ν[νB\A[VarA(νB∩A(f))]]

= ν[VarA(νB∩A(f))].

A.2 Decomposing variance

In this section we establish relationships between lack of correlations in the distribution ν

and well-behavedness of the decomposition of variance into local conditional terms. We
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measure the well-decomposition of variance into that in (proper) subsets A,B that cover Ψ

by the quantity V{A,B}, defined as follows:

V{A,B} ≡ V{A,B}(ν) = inf
f

ν[VarA(f)] + ν[VarB(f)]

Var(f)
, (A.5)

where the infimum is over non-constant functions f . Notice that V{A,B} ≤ 1 because

VarA(f) ≤ Var(f) by (A.1) and we can always consider functions that do not depend

on B, i.e., for which ν[VarB(f)] = 0. Thus, we regard V{A,B} = 1 as the case in which vari-

ance decomposes perfectly into conditional variance in A and B, while V{A,B} = 0 means

that the decomposition can be arbitrarily bad. Notice also that V{A,B} is exactly cgap of the

dynamics based on flipping the two blocks A,B.

We measure correlations between two non-intersecting subsets by normalized co-

variance. Specifically for subsets A,B such that A ∩ B = ∅, let

C{A,B} ≡ C{A,B}(ν) = sup
f,g

Cov(f, g)2

Var(f) · Var(g)
, (A.6)

where the supremum is over non-constant functions f and g that depend only on the con-

figurations on A and B respectively. Notice that since f does not depend on A then

Cov(f, g)2 = Cov[f, νA(g)]2 ≤ Var(f) · Var[νA(g)],

with equality if f = νA(g). Thus,

C{A,B} = sup
g

Var[νA(g)]

Var(g)
= sup

f

Var[νB(f)]

Var(f)
, (A.7)

where the supremums are over non-constant functions g and f that depend only on the

configurations on B and A respectively. In particular, C{A,B} ≤ 1. Indeed, C{A,B} = 0

means that the configurations on A and B are independent of each other, while C{A,B} = 1

means that they are completely dependent, i.e., there exist non-trivial events A and B
that depend only on the configurations on A and B respectively, such that A occurs if and

only if B occurs. Notice that C{A,B} being exponentially small in dist(A,B) corresponds to

exponential decay of correlations (as in Definition 2.5) with normalizing constants Cf =
√

Var(f). We also mention that, by (A.7), C{A,B} can be viewed as the contraction in

variance when projecting a function that depends only on the configuration B onto A (or

vice versa), and in particular, the variance mixing condition VM(`, ε) (as in Definition 5.7)

that was used in the tree setting is equivalent to C{A,B} = ε, where A = {x} and B =

Tx \ Bx,` (with notation as in Section 5.2).
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Notice that V{A,B} is defined for two subsets A,B that cover Ψ (and may intersect),

while C{A,B} is defined for two non-intersecting subsets (that may not cover Ψ). As we shall

now see, V{A,B} being close to 1 corresponds to C{A\B,B\A} = C{B,A} being close to 0, i.e.,

well-decomposition of variance corresponds to lack of correlations.

Theorem A.4 For any two subsets A,B that cover Ψ:

(i) C{B,A} ≤ 1 − V{A,B};

(ii) V{A,B} ≥
(

1 −
√

C{B,A}
)2

.

Bounds of the above type were already established in [BCC02], and the proof below is based

on arguments given there. However, our analysis for part (ii) is sharper and improves on

the corresponding claim in [BCC02], which gives V{A,B} ≥
(

1 −
√

C{B,A}
)2

− 2C{B,A}.

The main importance of our improvement is that it gives non-trivial bounds for all possible

values of C, while the result in [BCC02] is non-trivial only for C < 3 − 2
√

2 < 1.

Proof of Theorem A.4: We start with the rather trivial part (i). Consider an arbitrary

function f that depends only on the configuration on B. By (A.7), it is enough to show

that Var[νΨ\A(f)] = Var[νA(f)] ≤ (1 − V{A,B})Var(f). Now clearly, ν[VarB(f)] = 0 be-

cause f does not depend on the configuration on B. Therefore, by definition of V{A,B},

ν[VarA(f)] ≥ V{A,B}Var(f). Since Var[νA(f)] = Var(f) − ν[VarA(f)] (by (A.1)), we con-

clude that Var[νA(f)] ≤ (1−V{A,B})Var(f), as required. This completes the proof of part (i).

We go on to prove the more interesting part (ii). We first notice that ν[VarB(f)] =

Var[f − νB(f)]. To see this, write

Var[f − νB(f)] = Cov[f − νB(f), f − νB(f)] =

Cov(f, f) − 2Cov[f, νB(f)] + Cov[νB(f), νB(f)] = Var(f) − Var[νB(f)] = ν[VarB(f)].

Consider an arbitrary function f . We need to show that ν[VarA(f)]+ν[VarB(f)] ≥(
1 −

√
C{B,A}

)2

Var(f). Now w.l.o.g., assume Var[νA(f)] ≥ Var[νB(f)]. We will show that

under this assumption,

ν[VarB(f)] ≥
(

1 −
√
C{B,A}

)2

Var[νA(f)]. (A.8)
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This is enough because then

ν[VarA(f)] + ν[VarB(f)] ≥
(

1 −
√
C{B,A}

)2

(ν[VarA(f)] + Var[νA(f)])

=

(
1 −

√
C{B,A}

)2

Var(f).

We go on to establish (A.8):

Var[νA(f)] = Cov[f, νA(f)]

= Cov[f − νB(f), νA(f)] + Cov[νB(f), νA(f)]

≤ Cov[f − νB(f), νA(f)] +
√
C{B,A} · Var[νB(f)] · Var[νA(f)]

≤ Cov[f − νB(f), νA(f)] +
√
C{B,A} · Var[νA(f)]

≤
√

ν[VarB(f)] · Var[νA(f)] +
√
C{B,A} · Var[νA(f)],

where for the first inequality we used the definition of C{B,A} and the fact that νA(f)

and νB(f) depend only on the configurations on A and B respectively, for the second in-

equality we used the assumption that Var[νA(f)] ≥ Var[νB(f)], and the last inequality is

Cauchy-Schwartz. We conclude that

(
1 −

√
C{B,A}

)√
Var[νA(f)] ≤

√
ν[VarB(f)], i.e.,

(A.8) holds. This concludes the proof of part (ii).

Theorem A.4 tells us that for every function f , Var(f) ≤ (1 − √C{A,B})
−2 ×

(ν[VarA(f)]+ν[VarA(f)]). However, we can also get an approximation with a tighter factor

in front of ν[VarA(f)] by letting the factor in front of ν[VarB(f)] be looser. This is useful

for getting a decomposition of Var[νA(f)] = Var(f) − ν[VarA(f)] into c × ν[VarB(f)] +

ε × ν[VarA(f)], where we do not need the sharpest possible value for c (the best possi-

ble is c = 1), but look for a better ε than that given by Theorem A.4 (the best possible is

ε = C{B,A}/(1 − C{B,A})). An approximation of this kind was used in Section 5.2.1. We

show:

Theorem A.5 Consider two arbitrary subsets A,B that cover Ψ, and let ε = C{B,A}. Then,

for every function f ,

Var[νA(f)] ≤ 2(1 − ε)

1 − 2ε
· ν[VarB(f)] +

2ε

1 − 2ε
· ν[VarA(f)].
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Proof: By convexity of variance we have Var(g1 + g2) ≤ 2[Var(g1) + Var(g2)] for any two

functions g1, g2. We therefore write

Var[νA(f)] = Var[νA(f) − νA(νB(f)) + νA(νB(f)]

≤ 2Var[νA(f − νB(f))] + 2Var[νA(νB(f))]

≤ 2Var[f − νB(f)] + 2εVar[νB(f)]

= 2ν[VarB(f)] + 2ε(Var[νA(f)] + ν[VarA(f)] − ν[VarB(f)]),

where we used the facts that Var[f−νB(f)] = ν[VarB(f)] and that Var[νA(f)]+ν[VarA(f)] =

Var[νB(f)] + ν[VarB(f)] = Var(f). We therefore conclude that Var[νA(f)] ≤ 2(1−ε)
1−2ε ·

ν[VarB(f)] + 2ε
1−2ε · ν[VarA(f)], as required.

Before concluding this section, we wish to shed more light on the quantity C{A,B}

by bounding it using specific functions. Recall that σA stands for the restriction of the

configuration σ to the subset A. For σA in the support of ν, define the function

gσA
(ξ) =





1
ν(σA) if ξA = σA;

0 otherwise,
(A.9)

and for two non-intersecting subsets, define g(A,B)(σ, ξ) ≡ νξ

B
(gσA

), i.e., g(A,B)(σ, ξ) =

νξ

B
(σA)

ν(σA) measures how much σA is biased by conditioning on ξB . By Bayes rule,
νξ

B
(σA)

ν(σA) =
νσ

A
(ξB)

ν(ξB) , and therefore g(A,B)(σ, ξ) = g(B,A)(ξ, σ). Notice that, if the distribution ν is the

product of its marginals over A and B, then g(A,B) = 1 uniformly in both configurations.

More generally, the concentration of g(A,B) around it mean value 1 is a measure of lack of

correlations between A and B. Indeed, C{A,B} is bounded by the average (w.r.t the first

configuration) of the variance (w.r.t. the second configuration) of g(A,B) (though the order

can be reversed, by symmetry of C{A,B} and g(A,B)):

Theorem A.6 For any two non-intersecting subsets A,B,

C{A,B} ≤
∑

σ

ν(σ)Var[g(A,B)(σ, ·)].

We note that Theorem A.6 is not needed for the main text, but is rather standard and sets a

benchmark for concentration properties of g, to which we can compare when relating such

properties to the well-decomposition of entropy in the next section.
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Proof of Theorem A.6: Consider an arbitrary function f that depends only on the con-

figuration on B. By (A.7), it is enough to show that Var[νA(f)] ≤ εVar(f), where ε =
∑

σ ν(σ)Var[g(A,B)(σ, ·)]. The main observation we use is that, since f and g(A,B)(σ, ·) =

g(B,A)(·, σ) depend only on B, then for every σ,

νσ
A
(f) =

∑

ξB

νσ
A
(ξB) · f(ξB) =

∑

ξB

ν(ξB)g(B,A)(ξB , σ) · f(ξB)

=
∑

ξB

ν(ξB)g(A,B)(σ, ξB) · f(ξB) = ν[g(A,B)(σ, ·) f(·)].

Using in addition the fact that ν[g(A,B)(σ, ·)] = 1 for every σ gives:

Var(νA(f)) = ν[(νA(f) − ν(f))2]

=
∑

σ

ν(σ) · (νσ
A
(f) − ν(f))2

=
∑

σ

ν(σ) · Cov[g(A,B)(σ, ·) , f(·)]2 (A.10)

≤ Var(f)
∑

σ

ν(σ) · Var[g(A,B)(σ, ·)] ,

where the inequality is Cauchy-Schwartz.

A.3 Decomposing entropy

In this section we carry out an analysis analogous to the one in the previous section, by

replacing variance with entropy. Namely, we relate the well-decomposition of entropy to

certain properties of lack of correlations in the distribution ν.

The well-decomposition of entropy into that in (proper) subsets A,B that cover Ψ

is measured by a quantity analogous to VA,B. Specifically, define

E{A,B} ≡ E{A,B}(ν) = inf
f≥0

ν[EntA(f)] + ν[EntB(f)]

Ent(f)
, (A.11)

where the infimum is over non-constant and non-negative functions f . It is easy to see that

E{A,B} ≤ 1 for the same reason that V{A,B} ≤ 1.

We consider two types of measures of correlations between two non-intersecting

subsets. The first is an analog of C based on the characterization given in (A.7). Specifically,

for two subsets A,B such that A ∩ B = ∅, define

N(A,B) ≡ N(A,B)(ν) = sup
f≥0

Ent[νA(f)]

Ent(f)
, (A.12)
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where the supremum is over non-negative non-constant functions f that depend only on

the configuration on B. Thus, N(A,B) measures the (weakest) contraction in entropy when

projecting a function that depends only on the configuration in B onto A. Indeed, this is a

measure of correlation between the configurations on A and B respectively. For example,

if the two configurations are independent of each other then N(A,B) = 0, while if they are

completely dependent then N(A,B) = 1. Notice that unlike C{A,B}, N(A,B) is not necessarily

symmetric in A and B.

The second type of measure of correlations that we consider are certain concen-

tration properties of the function g(A,B) defined at the end of the previous section. (See

the discussion after (A.9).) As a warm up, we bound E{A,B} in terms of the uniform norm

of g(A,B). Define

|g{A,B}|∞ = inf

{
ε : 1 − ε ≤ g(A,B)(σ, ξ) ≤ 1

1 − ε
for every σ, ξ in the support of ν

}
,

(A.13)

and notice that |g{A,B}|∞ = |g{B,A}|∞. To get a better feel for this quantity, we note that

|g{A,B}|∞ = ε means that ν is ε-close to being a product distribution in a strong uniform

sense. Specifically, let ν̂ be the product distribution defined by ν̂(σ) ≡ ν(σB) · ν(σA) ·
νσ
(A∪B)

(σ). Observe that we can always write ν(σ) = ν(σB) · νσ
B
(σA) · νσ

(A∪B)
(σ). Thus,

since (1 − |g{A,B}|∞)ν(σA) ≤ νσ
B

(σA) ≤ (1 − |g{A,B}|∞)−1ν(σA) for every σ by definition of

|g{A,B}|∞, we conclude that (1−|g{A,B}|∞)ν̂(σ) ≤ ν(σ) ≤ (1−|g{A,B}|∞)−1ν̂(σ) for every σ.

Once again, we use lack of correlations (in this case, |g|∞ close to 0) to establish

well-decomposition of entropy (i.e., E close to 1):

Theorem A.7 For every two subsets A and B that cover Ψ,

E(A,B) ≥ (1 − |g{A,B}|∞)2.

Bounds as in Theorem A.7 were proven independently in [Ces01] and [DPP02]. Our bound

is slightly sharper, and again the main difference is that it is non-trivial for any value of

|g{A,B}|∞, rather than only for small enough values. In addition, although some of the

ideas we use in the proof are taken from [Ces01], our proof is much cleaner than both of

the previous ones.

Proof of Theorem A.7: We first prove that, if the configurations in A and B are inde-

pendent of each other (i.e., ν = ν̂, where ν̂ is defined w.r.t. A and B), then Ent(f) ≤
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ν[EntA(f)] + ν[EntB(f)] for every non-negative f , i.e., E = 1. For this, we use the fol-

lowing two basic properties of entropy. First, by definition, Ent(f) = ν(f log f
ν(f) ) and

ν[EntA(f)] = ν(f log f
νA(f) ). Second, by the variational characterization of entropy we have

νA(f log g
νA(g) ) ≤ EntA(f) for all non-negative functions f and g. We thus have:

Ent(f) = ν

[
f log

f

νA(f)

]
+ ν

[
f log

νA(f)

νB(νA(f))

]
+ ν

[
f log

νB(νA(f))

ν(f)

]

≤ ν [EntA(f)] + ν [EntB(f)] + ν

[
f log

νB(νA(f))

ν(f)

]
. (A.14)

We now notice that the last term on the r.h.s. is 0 when ν = ν̂ because then νσ
B(νA(f)) =

ν(νA(f)) = ν(f) for every σ in the support of ν. This completes the proof for the case ν = ν̂.

We now go on to consider general ν. The main observation we use is that if ν1

and ν2 are two distributions that differ by a factor of at most C, i.e., ν2(σ) ≤ Cν1(σ) for

every σ, then Ent2(f) ≤ CEnt1(f) for every non-negative function f , where Ent1 and Ent2

stand for the entropy of f w.r.t. ν1 and ν2 respectively. This observation was made previously

in, e.g., [Mar98], and follows from the fact that Ent(f) = ν[f log(f)−f log(ν(f))−f +ν(f)]

and that a log a− a log b− a + b ≥ 0 for all non-negative real numbers a, b. (The second fact

follows from straightforward calculus.)

We can now conclude the proof as follows. Let Ênt(f) stand for the entropy of f

w.r.t. ν̂. We then write:

Ent(f) ≤ Ênt(f) · (1 − |g{A,B}|∞)−1

≤ (ν̂[ÊntA(f)] + ν̂[ÊntB(f)]) · (1 − |g{A,B}|∞)−1

= (ν[ÊntA(f)] + ν[ÊntB(f)]) · (1 − |g{A,B}|∞)−1

≤ (ν[EntA(f)] + ν[EntB(f)]) · (1 − |g{A,B}|∞)−2 .

In the first inequality, we used the fact that ν(σ) ≤ (1 − |g{A,B}|∞)−1ν̂(σ) for every σ. In

the second, we used the fact that the configurations on A and B are independent of each

other under ν̂. The equality follows from the fact that EntA(f) and EntB(f) depend only

on the configurations on A and B respectively, and that ν(σA) = ν̂(σA) and ν(σB) = ν̂(σB)

for every σ. Finally, the last inequality follows from the fact that for every σ in the support

of ν, ν̂σ
A(ξ) ≤ (1 − |g{A,B}|∞)−1νσ

A(ξ) for all ξ, and similarly when A is replaced by B.

We conclude that E ≥ (1 − |g{A,B}|∞)2, as required.

We now go on to establish a correspondence between E and N . Recall that N(A,B)

is not necessarily symmetric in the two subsets A,B. We first notice that by replacing Var
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with Ent in the proof of Theorem A.4(i), we get that for any two subsets A,B that cover Ψ,

max
{
N(A,B),N(B,A)

}
≤ 1 − E{A,B}. The bound we get for the more interesting converse

direction is more involved. Let pA = min {p = ν(σA) : p > 0} stand for the minimum non-

zero probability of a configuration on A.

Theorem A.8 For any two subsets A,B that cover Ψ,

E{A,B} ≥ 1 − p−1
A

√
N(A,B) .

It is an interesting open question whether the dependence on p−1
A

in the above bound can

be replaced by a dependence on N(B,A), and in particular, whether E{A,B} can be bounded

in terms of max
{
N(A,B),N(B,A)

}
regardless of the minimum probabilities.

Proof of Theorem A.8: Recall that we need to show that, for every non-negative func-

tion f ,

ν[EntA(f)] + ν[EntB(f)] ≥
(
1 − p−1

A

√
N(A,B)

)
Ent(f).

By (A.14) it will be enough to show:

ν

[
νA(f) log

νA(νB(f))

ν(f)

]
≤ p−1

A

√
N(A,B) Ent(f).

We use the following claim in order to get this bound.

Claim A.9 Let µ be a probability measure over a finite space Ω where the probability of any σ ∈
Ω is either zero or at least p. Then for any two non-negative functions f and g over Ω we have

µ

[
f log

g

µ(g)

]
≤ 1

p

√
µ(f)

µ(g)
· Ent(f) · Ent(g) ,

where Ent is taken w.r.t. to µ.

Assuming Claim A.9, we conclude that

ν

[
νA(f) log

νA(νB(f))

ν(f)

]
≤ 1

p

√
Ent[νA(f)] · Ent[νA(νB(f))]

≤ 1

p

√
N(A,B) · Ent[νA(f)] · Ent[νB(f)]

≤ 1

p

√
N(A,B) Ent(f),

where in the second inequality we used the fact that νB(f) does not depend on the config-

uration on B. We note that, since neither νA(f) nor νA(νB(f)) depends on A, the effective
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probability space in the above derivation is the marginal over A, so indeed p can be taken

as pA. This completes the proof of Theorem A.8 assuming Claim A.9.

We go on to prove the claim. Consider two arbitrary non-negative functions f

and g. Let χ be the indicator function of the event that g ≥ µ(g). Clearly, χ log g
µ(g) ≥ 0 while

(1 − χ) log g
µ(g) ≤ 0. Also, since µ

[
log g

µ(g)

]
≤ log µ

[
g

µ(g)

]
= 0 then µ

[
(1 − χ) log g

µ(g)

]
≤

−µ
[
χ log g

µ(g)

]
. Letting fmax and fmin be the maximum and minimum values of f respec-

tively over configurations with non-zero probability, we get:

µ

[
f log

g

µ(g)

]
= µ

[
χf log

g

µ(g)

]
+ µ

[
(1 − χ)f log

g

ν(g)

]

≤ fmax · µ
[
χ log

g

µ(g)

]
+ fmin · µ

[
(1 − χ) log

g

µ(g)

]

≤ (fmax − fmin) · µ
[
χ log

g

µ(g)

]

≤ 1

p
· ‖f − µ(f)‖1 · µ

[
χ

(
g

µ(g)
− 1

)]

=
1

2p · µ(g)
· ‖f − µ(f)‖1 · ‖g − µ(g)‖1

≤ 1

p

√
µ(f)

µ(g)
· Ent(f) · Ent(g),

where we wrote ‖·‖1 for the L1 norm with respect to µ and used the fact that ‖f −µ(f)‖2
1 ≤

2µ(f)Ent(f) for any non-negative function f (see, e.g., [Sal97]). The proof of Claim A.9 is

now complete.

We conclude this section by showing that N(A,B) is bounded by a certain measure

of concentration of g(A,B). (The bound was used in Chapter 5 in order to establish the

entropy mixing condition EM for spin systems on trees.) Recall that in Theorem A.6 we

bounded C{A,B} in terms of the variance of g(A,B). Here we will need a stronger concen-

tration of g(A,B). Fix an ordered pair (A,B) of non-intersecting subsets, and for σA in the

support of ν, define

δσA
= inf

{
δ : ν

[
|g(A,B)(σA, ·) − 1| > δ

]
≤ e−2/δ

}
. (A.15)

Thus, a small value of δσA
means that g(A,B) is tightly concentrated in its second variable

around its mean value 1. Now, N(A,B) is bounded in terms of pA and the expectation of δσA
:
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Theorem A.10 There exists a numerical constant c such that

N(A,B) ≤ cp−2
A

∑

σA

ν(σA)δσA
.

Notice that since N(A,B) is not symmetric, it is important to establish the concentration in

the second variable of g(A,B). (A concentration in the first variable yields a bound on N(B,A).)

Proof: Fix an arbitrary non-negative function f that depends only on the configuration

on B. We have to show that Ent(νA(f)) ≤ εEnt(f), where ε = cp−2
A

∑
σA

ν(σA)δσA
. Since

Ent(f ′) ≤ Var(f ′)/ν(f ′) for every non-negative function f ′ (see, e.g., [Sal97]), then

Ent[νA(f)] ≤ Var[νA(f)]

ν[νA(f)]
=

∑
σA

ν(σA)Cov[g(A,B)(σA, ·) , f(·)]2
ν(f)

,

where the equality is by (A.10). Thus, the proof will be completed once we show that

Cov
[
g(A,B)(σA, ·) , f

]2 ≤ cν(σA)−2 · δσA
· ν(f)Ent(f) (A.16)

for some numerical constant c.

To establish (A.16) we make use of the following technical lemma.

Lemma A.11 Let {Ω,F , µ} be a probability space and let f1 be a mean-zero random variable

such that ‖f1‖∞ ≤ 1 and µ[ |f1| > δ ] ≤ e−2/δ for some δ ∈ (0, 1). Let f2 be a probability

density w.r.t. µ, i.e. f2 ≥ 0 and µ(f2) = 1. Then there exists a numerical constant c > 0,

independent of µ, f1, f2 and δ, such that µ(f1f2)
2 ≤ c δEntµ(f2).

Let us defer the proof of the lemma for now and complete the proof of Theorem A.10. We

apply the above lemma with µ = ν and

f1 =
g(A,B)(σA, ·) − 1

‖g(A,B)(σA, ·)‖∞
; f2 =

f

ν(f)
,

to deduce Cov
[
g(A,B)(σA, ·) , f(·)

]2 ≤ ‖g(A,B)(σA, ·)‖2
∞cδσA

ν(f)Ent(f); noting also that

‖g(A,B)(σA, ·)‖∞ ≤ ‖gσA
‖∞ = 1/ν(σA), this establishes (A.16) and thus completes the proof

of the theorem.

Proof of Lemma A.11: We split our analysis of µ(f1f2)
2 into three cases:

(a) Entµ(f2) ≥ 1
δ ;
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(b) δ < Entµ(f2) < 1
δ ;

(c) Entµ(f2) ≤ δ.

Case (a). We simply bound

µ(f1f2)
2 ≤ ‖f1‖2

∞µ(f2)
2 ≤ 1 ≤ δ Entµ(f2) .

Case (b). We use the entropy inequality (see, e.g., [ABCF*00]), which states that for any

t > 0,

µ(f1f2) ≤
1

t
log µ(etf1) +

1

t
Entµ(f2) . (A.17)

We choose the free parameter t in (A.17) equal to
√

Entµ(f2)/δ. Notice that, by construc-

tion, 1 < t < δ−1. Using the assumption µ(|f1| > δ) ≤ e−2/δ together with ‖f1‖∞ ≤ 1, we

get

µ(f1f2)
2 ≤

[1
t

log
(
etδ + et−2/δ

)
+
√

δEntµ(f2)
]2

≤
[
c1 δ +

√
δEntµ(f2)

]2
≤ c2 δEntµ(f2)

for suitable numerical constants c1, c2.

Case (c). Again we use the entropy inequality with t =
√

Entµ(f2)/δ ≤ 1, but we now

simply bound the Laplace transform µ(etf1) by a Taylor expansion (in t) up to second order:

1

t
log µ(etf1) ≤ 1

t
log
(
1 + e

t2

2
µ(f2

1 )
)
≤ e

t

2

[
δ2 + e−2/δ

]

=
1

2
e
[
δ2 + e−2/δ

]√
Entµ(f2)/δ,

which by (A.17) implies

µ(f1f2)
2 ≤

[ e

2
√

δ

(
δ2 + e−2/δ

)
+

√
δ
]2

Entµ(f2) ≤ c3 δEntµ(f2)

for another numerical constant c3.
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Appendix B

Entropy mixing from the log-Sobolev

constant

In this appendix we prove that if csob of the Glauber dynamics is bounded (i.e., entropy in

the dynamical system decays “fast” with time), then entropy decays exponentially fast in

space (i.e., the contraction in entropy when projecting from a subset A onto a subset B is

exponentially small in the distance between the two). This was claimed without proof for

trees in Chapter 5 (the reverse direction in Theorem 5.10), but in fact holds for all bounded-

degree graphs. Here we state and prove the general version. Recall from Appendix A.3 the

notation N(A,B) for the contraction in entropy when projecting a function that depends

only on the configuration on B onto A, and pA for the minimum non-zero probability of

a configuration on A. Also, throughout csob(µ
η
Ψ) denotes csob(P ), where P is the Glauber

dynamics for µη
Ψ.

Theorem B.1 Consider an arbitrary (permissive) spin system on an arbitrary graph of max-

imum degree b + 1. There exists a numerical constant c, and another constant ϑ > 0 that

depends only on b, such that for every region Ψ, any boundary condition η, and any two

non-intersecting subsets A,B of Ψ,

N(A,B) ≤ cp−3
A |A| exp[−ϑ · csob(µη

Ψ) · dist(A,B)].

Proof: Fix Ψ, η, and A,B. We will use Theorem A.10 which tells us that in order to bound

N(A,B), it is enough to establish strong concentration of g(A,B)(σA, ·) for every σA. Recall

the definition of this function from Appendix A.2 and the measure of its concentration δσA
,
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defined in (A.15). We will show that for every σA,

δσA
≤ 3e2|A|

ν(σA)
exp[−ϑ · csob(µη

Ψ) · dist(A,B)] (B.1)

for some constant ϑ > 0 that depends only on b. The theorem will then follow by applying

Theorem A.10.

The proof of the concentration result (B.1) is accomplished by establishing a con-

traction for a high enough norm:

Lemma B.2 There exists a constant ϑ > 0, depending only on the degree b, such that for any

function f that depends only on the configuration on A,

‖µB(f) − µη
Ψ(f)‖q+1 ≤ 3|A|

q
‖f − µη

Ψ(f)‖∞ ,

where q = exp[ϑ · csob(µη
Ψ) · dist(A,B)] and norms are taken w.r.t. µη

Ψ.

We first assume Lemma B.2 and complete the proof of the theorem. Applying Lemma B.2

with f = gσA
, and recalling that g(A,B)(σA, ·) = µB(gσA

), we get that

‖g(A,B)(σA, ·) − 1‖q+1 ≤ 3|A| · ‖g(A,B)(σA, ·) − 1‖∞
q

≤ 3|A|
q · µη

Ψ(σA)
.

Therefore, using Markov’s inequality,

µη
Ψ

[
|g(A,B)(σA, ·) − 1| >

3e2|A|
q · µη

Ψ(σA)

]
≤ e−2(q+1).

In particular, δσA
≤ 3e2|A|

q·µη
Ψ(σA)

, which establishes (B.1) and concludes the proof of Theo-

rem B.1.

Remark: A similar claim to Lemma B.2 was proved in [SZ95] in the context of Z
d; we reprove it

below for completeness. Also, a similar version for the L2 norm, and with csob replaced by cgap, was

used in [KMP01] to prove that bounded cgap implies exponential decay of variance with distance.

Proof of Lemma B.2: The proof has two main ingredients: the first is a bound on the speed

at which information propagates in the Glauber dynamics, while the second is a standard

relationship between csob and so-called “hypercontractivity”.

In order to use the hypercontractivity bound, we have to consider the continuous

time version of the dynamics mentioned in Chapter 2. Recall that P is the transition matrix
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associated with the (discrete time) Glauber dynamics for µη
Ψ. The transition kernel at time t

of the continuous time chain is defined as P̂t = et(P−I), where I is the identity matrix. Now,

let P̂Λ
t stand for the transition kernel of a modified dynamics where the spins of the sites

outside Λ are fixed to their values at time zero (the sites inside Λ being updated according

to the same rule as in the original dynamics). It is well known (see, e.g., [SZ95]) that there

exists a constant k0 depending only on b such that for any subset A, any function f that

depends only A, any t and any subset B at distance at least k0t from A,

‖P̂tf − P̂B
t f‖∞ ≤ 2|A|e−t‖f‖∞. (B.2)

Equation (B.2) is a manifestation of the fact that it takes at least `
k0

time before the spin

at a site can become sensitive to the configuration at distance ` from it, and is based on

similar ideas to those we used to prove Lemma 4.4, which gives a bound on the speed of

propagation of information in the discrete time process.

The second ingredient we need is a hypercontractivity bound. From Gross’s in-

tegration lemma (see, e.g., [ABCF*00]), we have ‖P̂tf‖q ≤ ‖f‖2 for any mean-zero func-

tion f , any t, and 2 ≤ q ≤ 1 + ecsob(µη
Ψ)t. Adding to this the fact that cgap(µη

Ψ) ≥ csob(µη
Ψ),

we may write

‖P̂tf‖q = ‖P̂t/2(P̂t/2f)‖q ≤ ‖P̂t/2f‖2 ≤ e−cgap(µη
Ψ)t/2‖f‖2 ≤ e−csob(µη

Ψ)t/2‖f‖2, (B.3)

where q = 1 + ecsob(µη
Ψ)t/2 and we used the fact that cgap bounds the rate of decay of the L2

norm.

We now conclude the proof of Lemma B.2 as follows. Without loss of generality,

consider an arbitrary function f that depends only on the configuration in A, with µη
Ψ(f) =

0. Let ` = dist(A,B). Then, for t = `/k0 and q = 1 + ecsob(µη
Ψ)t/2, we have

‖µB(f)‖q = ‖µB(P̂B
t f)‖q

≤ ‖P̂B
t f‖q

≤ ‖P̂B
t f − P̂tf‖q + ‖P̂tf‖q

≤ 2|A|e−t‖f‖∞ + e−csob(µη
Ψ)t/2‖f‖2

≤ 3|A|‖f‖∞e−ϑcsob(µη
Ψ)` ,

taking the constant ϑ = 1/2k0 (and using the fact that csob ≤ 1).


