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Abstract

We generalize previously known conditions for uniqueness of the Gibbs measure in statistical
physics models by presenting conditions of any finite size for models on any underlying graph.
We give two dual conditions, one requiring that the total influence on a site is small, and the other
that the total influence of a site is small. Our proofs are combinatorial in nature and use tools from
the analysis of discrete Markov chains, in particular the path coupling method. The implications
of our conditions for the mixing time of natural Markov chains associated with the models are
discussed as well. We also present some examples of models for which the conditions hold.
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1 Introduction

An important aspect of the study of spin systems in statistical mechanics is investigating the prop-
erties of the system when in macroscopic equilibrium. A spin system is composed of sites, which
are the vertices of some infinite, locally finite graph (e.g., the d-dimensional Cartesian lattice Zd).
A configuration of the system is an assignment of one of a (finite) set of spins to each site. The
sites interact locally, according to the specification of the system, such that different combinations
of spins on neighboring sites have different relative likelihoods. This interaction gives rise to a
well defined probability distribution over configurations of any finite subset (volume) of the sites,
conditional on a fixed configuration of the sites outside this subset. A macroscopic equilibrium, or
a Gibbs measure, is a probability measure over the configurations of all the sites that is compatible
with the conditional distributions on all finite volumes.

It is well known that, for any system of local interactions, at least one Gibbs measure always
exists. However, a given system may admit multiple Gibbs measures, and one of the central is-
sues in statistical physics is determining whether a spin system admits a unique or multiple Gibbs
measures. The motivation behind this classification is locating the boundary between systems that
admit a unique Gibbs measure and those admitting multiple ones. Finding this boundary is impor-
tant because it identifies the points at which different systems undergo a phase transition in their
macroscopic behavior from a unique possible equilibrium to multiple ones, a phenomenon that has
additional physical manifestations. For example, the uniqueness of the Gibbs measure is equivalent
to asymptotic independence between the configuration of a finite volume and the “boundary” con-
figuration outside a large ball around this volume, and thus the phase transition points described
above correspond to the emergence of long-range correlations (i.e., order) in the system. This also
explains why discrete mathematicians and probabilists are interested in this subject: the question
of uniqueness can be viewed combinatorially as comparing two finite distributions (conditioned on
two different boundary configurations), and asking whether or not their difference goes to zero as
the boundary ball recedes to infinity.

It is often the case that the distributions described above do not have succinct representations,
so that analyzing the asymptotics directly is impossible. Thus, it is important to give finite con-
ditions which imply uniqueness of the Gibbs measure. By “finite conditions” we mean conditions
that depend only on distributions over configurations in volumes of at most some constant size,
and hence can be verified by direct calculation. Dobrushin [4] was the first to give such a condi-
tion, which has become widely known as the “Dobrushin Uniqueness Condition”. This condition
considers only the distributions at single sites. Later, Dobrushin and Shlosman [5] gave a more
general condition which may depend on larger volumes (but still of finite size). However, unlike
the original Dobrushin condition, their condition is applicable only when the underlying graph of
sites is an integer lattice Zd. Additional versions of the Dobrushin-Shlosman condition were given
by others (e.g., Stroock and Zegarlinski [20]), but still only in the context of Zd.

In this paper, we generalize the above conditions by considering both larger volumes and any
underlying graph. Naturally, all such conditions require that the influence spins at different sites
have on each other is “small” in an appropriate sense. However, although they do not mention this
explicitly, some of the conditions in the literature require that the total influence on a site is small
while others require that the total influence of a site is small. We make a clear distinction between
these two cases, giving two dual conditions, both of them in the generality described above.

Our proofs are combinatorial in nature and involve a dynamical analysis similar to that carried
out in the analysis of Markov chains. We make heavy use of couplings, especially the path coupling
method [2]. As we discuss in the text, the connection with Markov chains is part of a more general
framework of connections between decay of correlations in the Gibbs measure (spatial mixing) and
the mixing time of a corresponding Markov chain (temporal mixing) [20, 14, 3, 13, 8, 1].

We apply our conditions to prove uniqueness of the Gibbs measure for various models. Although
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the models we discuss are already known to admit a unique Gibbs measure by other methods, for
most of them, our results extend the range of parameters for which uniqueness is established using
“finite size” conditions of the Dobrushin type. In addition, our applications illustrate how our two
conditions may be used in different scenarios and clarify the differences between them.

The organization of the paper is as follows. In Section 2 we give definitions and necessary
background on spin systems, Gibbs measures and coupling analysis, and state our results precisely.
Section 3 contains the proofs of these theorems. In Section 4 we give a few extensions of our results
and discuss the implications of our conditions in the Markov chain setting. Finally, in Section 5 we
apply our conditions to various models, thus (re)proving that they admit a unique Gibbs measure.

2 Definitions, preliminaries and statements of results

2.1 Spin systems and Gibbs measures

Let G = (V,E) be a countably infinite undirected graph that is locally finite (i.e., of bounded
degree). Let S be a finite alphabet referred to as the spin space. A configuration is then an element
σ ∈ Ω := SV , or an assignment of spins to V .

We use the following terminology and notation. Elements of V are called sites. Subsets of V
are called regions, and denoted by upper-case Greek letters. If Λ is a region, then Λc := V \ Λ
and ∂Λ := {x ∈ Λc | ∃y ∈ Λ s.t. {x, y} ∈ E} is the outer boundary of Λ. For a configuration σ we
write σx for the spin at site x under σ, and similarly, σΛ for the configuration on Λ. When we write
“σ = τ on Λ” we mean that σΛ = τΛ. Similarly, “σ = τ off Λ” means that σΛc = τΛc .

We consider spin systems with nearest neighbor interactions: each edge {x, y} ∈ E is associated
with a symmetric pair potential U{x,y} : S×S → R∪{∞}, and each vertex x ∈ V is associated with
a self potential Ux : S → R∪ {∞}. Then, for a finite region Λ, the Hamiltonian HΛ : Ω → R∪ {∞}
is defined as

HΛ(σ) :=
∑

{x,y}∈E : {x,y}∩Λ6=∅

U{x,y}(σx, σy) +
∑
x∈Λ

Ux(σx).

The value this Hamiltonian assigns can be considered as the contribution to the energy of σ coming
from Λ. Let τ specify a boundary condition. The finite region Gibbs distribution on Λ conditioned
on τ is defined as:

γτ
Λ(σ) :=

{
1

Zτ
Λ

exp(−HΛ(σ)) if σ = τ off Λ
0 otherwise,

(1)

where Zτ
Λ is the appropriate normalizing factor. Notice that by definition, the distribution on

the configurations of Λ depends only on τ∂Λ. In order to guarantee that γτ
Λ is well defined, it

is in fact defined only for feasible boundary conditions. A configuration τ is said to be feasible
if and only if Ux,y(τx, τy) and Ux(τx) are finite for every edge {x, y} ∈ E and every site x ∈ V †.
Naturally, we require that the potentials give rise to at least one feasible configuration. Notice that
for feasible τ , γτ

Λ is indeed well defined, i.e., there is always at least one configuration σ to which
the distribution assigns positive probability (τ itself is such a configuration). Notice also that only
feasible configurations σ may be in the support of the distribution.

Example 1 Probably the best known spin system is the Ising model. In this case, the spin space
is S = {−1,+1}, while U{x,y}(s1, s2) = −β · s1 · s2 and Ux(s) = −β ·h · s, where β ∈ R is the inverse
temperature and h ∈ R is the external field. Thus, the energy of a configuration is linear in the
number of edges with disagreeing spins, as well as the number of spins with sign opposite to that
of h.

†Infeasible configurations exist only in systems with hard constraints, where some potentials may take infinite values.
See Example 2
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Example 2 Another famous example is the hard-core model (independent sets). In this model the
spin space is S = {0, 1}, and the potentials are U{x,y}(1, 1) = ∞ and U{x,y} = 0 otherwise, and
Ux(s) = −s · lnλ, where λ is the activity parameter. The interpretation here is that a spin of 1
stands for an occupied site so a configuration specifies a subset of occupied sites. The infinite energy
the edge potential assigns to a pair of occupied sites means that there is a hard constraint forbidding
two neighboring sites from both being occupied. Thus, in this model, a configuration τ is feasible
if and only if it specifies an independent subset of V . Furthermore, the finite Gibbs distributions
are over independent sets σ, with the probability of σ being proportional to λ|σ|, where |σ| is the
size (i.e., the number of occupied sites) of the independent set σ.

It is not difficult to verify that any finite region Gibbs distribution satisfies what are called the
“DLR compatibility conditions”, namely, for every Λ, any feasible τ and σ that agree off Λ, and
every ∆ ⊆ Λ,

γτ
Λ( · |σ∆c) = γσ

∆. (2)

An immediate consequence is that γτ
Λ is stationary under γ∆. We illustrate what stationarity means

with the following two-step process (over configurations on Λ). In the first step, a configuration σ is
chosen according to γτ

Λ. In the second step, a configuration is chosen according to γσ
∆. Stationarity

means that the resulting distribution of the two-step process is the same as if we only execute the
first step, namely, choosing from γτ

Λ.
The collection of all the finite region Gibbs distributions γτ

Λ as Λ and τ vary is referred to as
the specification γ. Clearly, γ is completely determined by the set of pair and singleton potentials,
but in the sequel it will often be more convenient to consider the specification γ, rather than
the potentials, as representing the spin system. The notion of DLR compatibility motivates the
definition of probability measures on the infinite space that are compatible with a specification γ.

Definition 2.1 A probability measure µ over the subset of feasible configurations is called a Gibbs
measure for the specification γ if, for every finite region Λ and µ-almost every configuration σ,

µ( · |σΛc) = γσ
Λ.

The physical intuition for a Gibbs measure is that it describes a macroscopic equilibrium, i.e., all
parts of the system are in equilibrium with their boundaries.

It is well known that for any specification γ derived as above, a Gibbs measure always exists.
However, several Gibbs measures (or “phases”) for a given specification may coexist (see, e.g., [9]
or [10] for details and more on Gibbs measures). As explained in the Introduction, a central goal
is to classify a given specification as admitting either a unique Gibbs measure or multiple ones.
Usually, a description of a spin system includes a macroscopic parameter (such as temperature in
the Ising model) and the aim is to classify the range of parameter values into two regimes, one
where the Gibbs measure is unique, and the other where there are multiple Gibbs measures. For
example, the Ising model on the square integer lattice Z2 with no external field admits a unique
Gibbs measure when the temperature is above a known critical value Tc = 1/βc, and two distinct
Gibbs measures when the temperature is below Tc. One of these Gibbs measures is the limit of γτ

Λ

as Λ goes to Z2, where the boundary configuration τ is the all-(+) configuration. The other Gibbs
measure is the same limit where τ is the all-(−) configuration.

Since the Gibbs measure is unique if and only if the limit of finite volume Gibbs distributions is
unique, the notion of uniqueness can be interpreted as an asymptotic independence between the
configuration of a finite region and a distant boundary configuration. In order to write the above
in a formal way, we introduce the following notation. Let µ1 and µ2 be two probability measures
on Ω, and Λ be a finite region. Then

‖µ1 − µ2‖Λ := max
A⊆SΛ

|µ1(A)− µ2(A)|, (3)
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i.e., ‖µ1 − µ2‖Λ is the total variation distance between the projections of µ1 and µ2 on SΛ. The
Gibbs measure for the specification γ is unique if and only if the following condition holds.

Proposition 2.2 A specification γ admits a unique Gibbs measure if and only if for every finite region Λ
there exists an infinite sequence of regions Λ ⊂ Ψ1 ⊂ Ψ2 ⊂ . . . ⊂ Ψm ⊂ . . . such that every x ∈ V is in
Ψm for some m and

sup
τ,σ

‖γτ
Ψm

− γσ
Ψm

‖Λ −→
m→∞

0. (4)

Proof: The proposition is standard and we prove the forward direction (the one relevant for
our purposes) for completeness; the reverse direction follows from the fact that for any boundary
condition τ , the limit of γτ

Ψm
as m → ∞ (at least along appropriate subsequences) is a Gibbs

measure (see, e.g., Chapter 2 in [10] or Chapter 4 in [9] for details). Before we continue with
the proof, we mention that two Gibbs measures µ1, µ2 are considered the same if for every finite
region Λ, the projections of µ1, µ2 on SΛ are the same. (Again, see [10] or [9] for details and
justification). We go on with the proof and fix an arbitrary finite region Λ. If µ is a Gibbs measure
then by definition, for every Ψ ⊇ Λ, the projection of µ on SΛ is a convex combination of the
projections of γσ

Ψ on SΛ as σ varies. Thus, if µ1 and µ2 are two Gibbs measures then for every m,
‖µ1 − µ2‖Λ ≤ supτ,σ ‖γτ

Ψm
− γσ

Ψm
‖Λ. Now, if (4) holds then by taking m →∞ we conclude that the

projections of µ1 and µ2 on SΛ are the same and hence that µ1 = µ2.

Clearly, it is not possible to mechanically verify the condition in Proposition 2.2 since it involves
inspecting infinitely many distributions in regions of arbitrary size. Thus, it is important to give
general tools that allow one, by performing finite calculations, to classify a given specification as
admitting either a unique or multiple Gibbs measures. Examples of such tools are the Dobrushin [4]
and Dobrushin-Shlosman [5] conditions. These are conditions on the finite Gibbs distributions over
an appropriate set of bounded diameter regions which ensure that the Gibbs measure is unique.
These conditions have turned out to be very useful, since they can be verified by direct calculation
for a number of models in appropriate parameter ranges, thus implying uniqueness of the Gibbs
measure in a rather straightforward way. In this paper, we generalize the Dobrushin and Dobrushin-
Shlosman conditions, extending their applicability as well as providing new insights into the theory
underlying them.

2.2 Dynamics

The conditions we give (and their proofs) employ notions and tools used in the construction and
analysis of local Markov chains that are designed to sample from the Gibbs distribution. In Markov
chains of this type a step is a random update of a finite size region, i.e., in each step of the chain
the configuration in some finite region (block) is replaced by a configuration chosen from some
distribution, where this distribution is determined by the current configuration. These distributions
are constructed in a way that guarantees convergence of the chain to the Gibbs distribution. In this
subsection we set the notation for and define local updates in precise terms that are useful for our
discussion.

Let {Θi}i=1,2,... be a collection of finite regions (blocks) that cover G finitely many times, i.e.,
each site is included in at least one and at most finitely many Θi. In addition, each Θi is assigned
a positive weight wi. We refer to an element of the collection as a block (rather than a region)
in order to distinguish blocks from other regions mentioned in our discussion. In a local update
rule, the collection of blocks {Θi} specifies the blocks whose configuration may be updated. The
relevance of the weights wi is that the updated block is chosen at random from some finite subset
of the collection, and the probability of choosing Θi is proportional to wi.

Once a weighted collection of blocks is given, the second ingredient needed in order to complete
the specification of an update rule is the collection of distributions that govern the result of an
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update. As mentioned above, the distribution over resulting configurations depends on the current
configuration. Thus, we need to specify a collection of distributions κ = {κτ

i }, indexed by the
current configuration τ and the index i of the block to be updated. Naturally, these distributions
have to be consistent with the Gibbs measure:

Definition 2.3 We say that κ is a local update rule for the specification γ w.r.t. the collection of blocks
{Θi} if κ = {κτ

i } is a collection of probability distributions such that:

1. for every configuration τ and every i, κτ
i is a probability distribution on the configurations that

agree with τ off Θi;

2. for every feasible τ and i, γτ
Θi

is stationary under κi, where the notion of stationarity was ex-
plained following equation (2);

3. the projections of κτ
i and κσ

i on SΘi are the same whenever τ and σ agree on Θi ∪ ∂Θi, i.e., the
distribution κτ

i (on the configurations in Θi) depends only on τΘi∪∂Θi
.

Property 1 guarantees that only Θi is updated under κτ
i while the rest of the configuration remains

unchanged. Property 2 ensures that the update rule is consistent with the Gibbs distribution‡.
Property 3 is a locality requirement in the sense that the result of an update of Θi depends only
on the current configuration in Θi and its immediate neighborhood; this is a natural requirement
since the Gibbs distribution in Θi is also local, i.e., depends only on ∂Θi.

We wish to emphasize the following facts regarding local update rules. First, unlike γ, we re-
quire that κτ

i is defined even for infeasible τ . However, the stationarity requirement does not apply
to infeasible configurations, and thus, unless τ agrees with some feasible configuration on Θi∪∂Θi,
the specification γ imposes no restriction on the distribution κτ

i . Second, the fact that γτ
Θi

is sta-
tionary under κi for every feasible τ implies by (2) that, for any Λ ⊇ Θi and every feasible τ , γτ

Λ

is stationary under κi, i.e., any Gibbs distribution in any region that includes Θi is unaffected by
an update of Θi. Third, unlike γτ

Θi
, κτ

i may depend on the configuration inside Θi (as well as the
configuration on ∂Θi). Nevertheless, a natural choice for κτ

i is simply γτ
Θi

(known as the “heat-
bath” update), but other possible and reasonable choices exist. As an example of other possible
local update rules, consider a “Metropolis” update where κτ

i is the distribution resulting from the
following process. First, update the configuration in Θi by choosing it u.a.r. from SΘi; suppose the
resulting configuration is σ. Then, output σ (“accept”) with probability min

{
exp(−HΘi

(σ))

exp(−HΘi
(τ)) , 1

}
and

otherwise output τ (“reject”). There are other examples of more sophisticated update rules which
are specific to certain models (e.g., the update rule for proper colorings described in [21], or the
one for independent sets [7] which we discuss in Section 5).

We now go on with our definitions. Since (by property 1 of Definition 2.3) the spin of a given
site may change only when updating a block that includes this site, we will often need to refer to
the subset of such blocks. For a site x, let B(x) := {i | x ∈ Θi}. Similarly, for a region Λ, B(Λ) :=
{i | Λ ∩Θi 6= ∅} =

⋃
x∈Λ B(x). Finite subsets of block indices arise throughout our discussion, and

for such a subset S we write wS :=
∑

i∈S wi for its aggregated weight.
A common tool for analyzing Markov chains that use a local update rule is to couple the updates

of Θi starting from two different configurations. A coupling of two distributions µ1 and µ2 is any
joint distribution whose marginals are µ1 and µ2. For any two configurations η and ξ that differ
in exactly one site, let Ki(η, ξ) be a coupling of κη

i and κξ
i . (These atomic couplings determine a

coupling K(η, ξ) for arbitrary pairs of configurations η, ξ that differ in more than one site, using
the path coupling construction explained in Section 3.2). If η and ξ agree on Θi ∪ ∂Θi, Ki(η, ξ) is

‡Notice that we only require that the Gibbs distribution is stationary w.r.t. the update and not that it is the unique
stationary distribution, as is the case when constructing a Markov chain for sampling from the Gibbs distribution. See
Section 4.2 for a discussion on the Markov chains setting.
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always defined as the coupling where the two configurations agree on Θi with probability 1. We
call the collection {Ki}, denoted K, a coupled update rule for γ. From here onwards, when we refer
to a coupled update rule K, we assume it implicitly specifies the collection of blocks {Θi}, their
weights {wi} and the local update rule κ according to which K is defined.

Our aim is to give conditions on K that imply uniqueness of the Gibbs measure for the specifi-
cation γ. Namely, our theorems will be of the form: “If there exists a coupled update rule K for the
specification γ such that K satisfies certain conditions, then there is a unique Gibbs measure that
is consistent with γ.” The conditions on K will require that under a coupled update, the average
“distance” between the two coupled configurations is small. Our notion of distance is specified per
site. Let ρ = {ρx}x∈G be a collection of metrics on the spin space S. We write ρx(η, ξ) for ρx(ηx, ξx),
and abuse this notation when considering a coupling Q by writing ρx(Q) for the average distance
(w.r.t. the joint distribution Q) between the two coupled configurations. Our notion of distance is
extended to regions by summing over single sites, i.e., we let ρΛ(η, ξ) :=

∑
x∈Λ ρx(η, ξ). To illus-

trate the above notion of distance, we note that in the applications given in Section 5 the metrics
we use are of the form ρx = ux · ρδ, where ux ∈ R+ is a weight associated with the site x and
ρδ(s1, s2) = 1 if s1 6= s2 (and naturally, ρδ(s1, s2) = 0 if s1 = s2). In this case, ρx(Q) is just ux times
the probability that the spins at x differ under the coupling Q, and ρΛ(Q) is the average weighted
Hamming distance between the two coupled configurations in Λ.

Our theorems below consider collections of metrics with the following two natural properties.
The first property states that the distance at any single site is bounded by a uniform constant: we
say that a collection of metrics {ρx} is bounded if supx∈V maxs1,s2∈S ρx(s1, s2) is finite, where we
recall that V is the set of vertices of G. The second, stronger property states that the total distance
in arbitrarily large regions is bounded by a uniform constant: we say that a collection of metrics
ρ = {ρx} is summable if

∑
x∈V maxs1,s2∈S ρx(s1, s2) is finite.

2.3 Results

Once a coupled update rule K and a collection of metrics ρ = {ρx} are fixed, we are in a position
to define the influence of a site y on another site x (w.r.t. K and ρ) in an analogous way to the
definition of the “matrix of dependencies” in Dobrushin’s condition [4].

Definition 2.4 For a given coupled update rule K and collection of metrics ρ, define the influence of
site y on site x, denoted Ix←y, as the smallest constant for which, for all pairs of configurations (η, ξ)
s.t. η = ξ off y, ∑

i∈B(x)

wiρx(Ki(η, ξ)) ≤ ρy(η, ξ)Ix←y.

The motivation for the above definition is that Ix←y / wB(x) is an upper bound on the average
distance between the coupled spins at x (relative to the initial distance between the spins at y)
at the end of the following procedure: starting from two configurations that may differ only at y,
choose a block Θi ∈ B(x) with probability wi / wB(x) and perform a coupled update of Θi. Note
that Ix←y = 0 if y /∈

⋃
i∈B(x)(Θi ∪ ∂Θi) (i.e., only sites in or adjacent to blocks containing x may

have non-zero influence on x). We write Ix← :=
∑

y Ix←y for the sum of influences of all sites on
the site x (and notice by the previous remark that this sum is finite). Our first theorem states that,
if the normalized total influence on every site w.r.t. a bounded collection of metrics is less than 1,
then the Gibbs measure is unique.

Theorem 2.5 If a specification γ admits a coupled update rule K together with a bounded collection
of metrics ρ for which supx

{
Ix← / wB(x)

}
< 1 , then the Gibbs measure for γ is unique.

We note that our requirement that the metric collection be bounded is necessary. In our discus-
sion of applications in Section 5 we give an example of a specification that admits multiple Gibbs
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measures but for which there exists a coupled update rule and an unbounded metric collection that
satisfy the condition in Theorem 2.5.

Remark: Previously known conditions involving the total influence on a site are the single site Dobrushin
condition [4] and the condition referred to as DSU(Y ) by Stroock and Zegarlinski [20]. Both conditions
only consider the case in which ρx = ρδ for all x, where ρδ was defined at the end of Section 2.2. In addition,
the Dobrushin condition only considers the case in which each Θi is a single site. The condition of Stroock
and Zegarlinski, while considering blocks of larger size as we do, only considers the special case where the
underlying graph G is an integer lattice Zd. Thus, our Theorem 2.5 is a generalization of both Dobrushin’s
condition and the Stroock and Zegarlinski one.

In our second theorem we consider a natural dual condition, namely, that the total influence
of every site is small. Following the line established in the previous condition, we write I←y for
the total influence of site y. Although it might seem natural to define I←y as

∑
x Ix←y, the ap-

propriate definition turns out to be a slightly more relaxed one obtained by changing the order of
quantification over pairs of configurations:

Definition 2.6 For a given coupled update rule K and collection of metrics ρ, define the total influence
of site y, denoted I←y, as the smallest constant for which, for all pairs of configurations (η, ξ) s.t.
η = ξ off y, ∑

i

wiρΘi(Ki(η, ξ)) ≤ ρy(η, ξ)I←y.

Again, there are only finitely many non-zero terms in the sum since there are only finitely many
blocks Θi which are affected by y. The relevance of this definition comes from the fact that I←y

is related to the average total distance resulting from an update of a block randomly chosen from
those affected by y, when starting from two configurations that differ only at y. (The exact rela-
tionship between I←y and this distance is rather involved; the detailed bound is given in Section 3).
To see the connection to the previous definition of influence, notice that I←y ≤

∑
x Ix←y. In fact,

the only difference between these two expressions is that in
∑

x Ix←y the quantification over pairs
of configurations is taken separately for each x, while in the definition of I←y the quantification is
taken once, before summing over x (the summation over x comes from the expansion of ρΘi).

Compared to the condition in Theorem 2.5, our condition for uniqueness based on the influence
of a site places a stronger restriction on the metric collection we are allowed to use by requiring
that it be summable.

Theorem 2.7 If a specification γ admits a coupled update rule K together with a summable collection
of metrics ρ that satisfy supy wB(y) < ∞, infy wB(y) > 0 and supy

{
I←y / wB(y)

}
< 1 , then the Gibbs

measure for γ is unique.

Again, the requirement that the metric collection be summable is necessary as is illustrated in
Section 5, where we also show that the condition supy wB(y) < ∞ is necessary. It is not clear
whether the requirement that infy wB(y) > 0 is necessary or just an artifact of our proof.

Remark: A previously known condition involving the total influence of a site was given by Dobrushin and
Shlosman [5]. However, they only considered the case where the underlying graph G is an integer lattice Zd

and the collection of blocks {Θi} is the set of all translations of some fixed subset Θ. In addition, in their
condition there is freedom to specify only one metric ρ, so that ρx = ρ for all x ∈ Zd. Notice that this means,
in our language, that the resulting collection of metrics is not summable, which at first sight seems not to fit
the framework of Theorem 2.7. However, Theorem 2.7 can still be seen as a generalization of the Dobrushin-
Shlosman condition as we now explain. Suppose, as in the Dobrushin-Shlosman setting, that there exists
a coupled update rule K and a single metric ρ for which the condition in Theorem 2.7 holds with ρx = ρ
for all x ∈ Zd, and that the diameter of the blocks Θi used by K is bounded by some constant r. We can
then construct a slightly modified collection of metrics by letting ρ′x = (1 + ε)−|x|ρ, where |x| stands for the
distance of the site x from the origin of Zd and ε > 0 is a small enough constant. Since the volume of a ball
around the origin of Zd grows subexponentially with the ball’s radius, ρ′ is clearly summable for any ε > 0.
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On the other hand, it is not too difficult to see that if the condition in Theorem 2.7 holds w.r.t. ρ, and if ε is
small enough, then the condition also holds with ρ replaced by ρ′. The reason for this is that the influence of
a site can increase by a factor of at most (1+ ε)r when replacing ρ by ρ′. In fact, in their proof Dobrushin and
Shlosman use a similar construction to the above. Furthermore, the fact that in their condition the metric
is the same for all sites restricts their condition to models on Zd (or, more precisely, to models on graphs of
sub-exponential growth). By allowing different metrics for different sites (but requiring that the collection
is summable) we are able to handle arbitrary graphs with no restriction on their geometry.

Remark: At this point it is also worth mentioning that in the literature, the Dobrushin-Shlosman condition
is sometimes referred to as a direct extension of the single-site Dobrushin condition although in fact the two
conditions are dual in nature. The reason for this misconception is that the Dobrushin-Shlosman condition
was only stated for translation invariant update rules (for ease of notation), allowing the authors to write it
in terms of the total influence on a site (or on a block) even though the property they used in the proof is that
the total influence of a site is small (inequalities 2.24 and 2.26 in the proof of Lemma 2.2 in [5]). To clarify
this point further, notice that for specifications on Zd, when the coupled update rule is translation invariant
and the metrics ρx are uniform in x, then the matrix of dependencies is translation invariant as well, i.e.,
Ix←y depends only on x − y (the difference between the two d-dimensional vectors x and y). Therefore,∑

x Ix←y =
∑

y Ix←y and thus supy I←y ≤ supy

∑
x Ix←y = supx

∑
y Ix←y = supx Ix←. In other words, in

this setting, if the condition involving the total influence on a site holds (Theorem 2.5) then so does the
condition involving the total influence of a site (Theorem 2.7).

Remark: As we will discuss in more detail in section 4.2, conditions like the ones in Theorems 2.5 and 2.7
also imply that the Markov chain corresponding to the update rule κ has essentially optimal mixing time.
This is in fact part of a more general framework of connections between optimal mixing time of the Markov
chain and uniqueness of the Gibbs measure. We also note that in the context of Markov chains the duality
between influence on and influence of a site was already mentioned in [2], where it was referred to as a
duality between conditions on the rows and on the columns of the dependency matrix respectively.

3 Proofs

3.1 Framework

Our theorems state that under certain conditions the Gibbs measure for a given specification γ is
unique. Thus, following Proposition 2.2, we will show that if the hypothesis of the theorems is
true then for every finite region Λ we can find an infinite sequence of finite regions {Λm}m=0,1,2,...

such that Λ = Λ0 ⊆ Λ1 ⊆ . . . ⊆ Λm ⊆ . . . and for every two (boundary) configurations σ and τ ,
‖γσ

Λm
− γτ

Λm
‖Λ → 0 as m →∞.

The construction of the sequence {Λm} depends on the collection of blocks {Θi} used by the
coupled update rule given in the hypothesis of the theorems. For a subset of block indices S, let
Φ(S) :=

⋃
i∈S(Θi ∪ ∂Θi) stand for the region of sites that may influence the result of an update of

a block from S. Then the sequence {Λm} is defined recursively as Λ0 = Λ and Λm+1 = Φ(B(Λm)).
The important property of this sequence is that, if x ∈ Λm, then all the sites that have non-zero
influence on x (via a coupled update) are included in Λm+1. Notice also that, since every site is
included in at least one block Θi, then Ψ ⊆ Φ(B(Ψ)) and therefore Λm ⊆ Λm+1. It is also easy to
see that the sequence {Λm} consumes V , i.e., that every site x ∈ V is in some Λm.

The proofs of both our theorems will take the following form. For an arbitrary finite region Λ
and arbitrary boundary configurations σ and τ , using the given coupled update rule we will con-
struct a coupling Qm of γσ

Λm
and γτ

Λm
such that ρΛ(Qm) is exponentially small in m, and in par-

ticular, vanishes as m increases. This will conclude the proofs since, if η and ξ stand for the two
coupled configurations under Qm, then

‖γσ
Λm

− γτ
Λm
‖Λ ≤ PrQm(ηΛ 6= ξΛ) ≤ ρΛ(Qm)

minηΛ 6=ξΛ ρΛ(ηΛ, ξΛ)
, (5)

and minηΛ 6=ξΛ ρΛ(ηΛ, ξΛ) > 0 because ρΛ is a metric on SΛ.
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3.2 Path coupling

When a coupled update rule K is given then Ki(η, ξ) is specified only for pairs (η, ξ) that differ
in a single site. Based on these atomic couplings, in this subsection we extend this definition to
coupled updates for arbitrary pairs of starting configurations. Before doing so, we set notation for
an update of a random block. Let S be a finite set of natural numbers indexing blocks. We write
κη

S := (
∑

i∈S wiκ
η
i ) / wS for the distribution resulting from updating a random block from S starting

from configuration η, where the probability of updating Θi for i ∈ S is proportional to wi. Similarly,
we write KS(η, ξ) := (

∑
i∈S wiKi(η, ξ)) / wS for a coupled update of a random block from the set S

starting from configurations η and ξ that differ at a single site. Notice that KS(η, ξ) is indeed a
coupling of κη

S and κξ
S .

We now extend the definition of KS to arbitrary pairs of starting configurations. We first con-
sider pairs (η, ξ) that agree on Φ(S) (but may differ in arbitrarily many sites elsewhere). Notice that
such pairs induce the same distribution on configurations of Φ(S) when updating a random block
from S, and thus we define KS(η, ξ) as the trivial coupling where the two resulting configurations
agree on Φ(S) with probability 1. For general η and ξ, KS is defined using a path coupling. Path
couplings (in a more general setting) were introduced in [2] where they were used to upper bound
the mixing time of certain Markov chains, although similar ideas were already used in the proofs
of the uniqueness conditions in [4] and [5].

The idea of a path coupling is to interpolate over differences at single sites, thus reducing the
definition of the coupling for general starting pairs (η, ξ) to those that differ at exactly one site.
Although in the literature the interpolation is usually taken only over the sites at which η and ξ
differ, here, in order to ease notation, we interpolate over all sites in Φ(S). Let z1, z2, . . . , zn be an
enumeration of the sites in Φ(S), where n = |Φ(S)|. Given η and ξ, we then construct a sequence
of configurations η(0), η(1), . . . , η(n) such that η(0) = η, and for 1 ≤ j ≤ n, η

(j)
x = η

(j−1)
x for all x 6= zj

while η
(j)
zj = ξzj . Observe that for every 1 ≤ j ≤ n, η(j) agrees with ξ on {z1, . . . , zj} and with η

on {zj+1, . . . , zn}. In particular, η(n) agrees with ξ on Φ(S). Furthermore, η(j−1) and η(j) may only
disagree at zj , and η(j) = η(j−1) if and only if η and ξ assign the same spin to zj .

Using the above notation, observe that the couplings KS(η(j−1), η(j)) are already defined for all
1 ≤ j ≤ n, as is the (trivial) coupling KS(η(n), ξ). We go on to construct the coupling KS(η, ξ).
Recall that KS(η, ξ) should be a coupling of κη

S and κξ
S , i.e, a coupling of the update of a random

block Θi, where i ∈ S, starting from η and ξ respectively. To construct this coupling, first choose a
configuration σ(0) from κη

S . Then, choose a configuration σ(1) from κη(1)

S according to the coupling
KS(η, η(1)) conditioned on σ(0) being the first configuration in the pair. It is easy to verify that the
unconditional distribution of σ(1) is indeed κη(1)

S . Continuing inductively, in step j, choose a configu-

ration σ(j) from κη(j)

S according to the coupling KS(η(j−1), ηj) conditioned on σ(j−1). Finally, choose
a configuration σ(n+1) from κξ

S according to the trivial coupling KS(η(n), ξ) conditioned on σ(n).
(The last coupling changes the configuration outside Φ(S) from η to ξ). Notice that the joint distri-
bution of σ(0), σ(1), . . . , σ(n+1) is a simultaneous coupling of the distributions κη

S , κη(1)

S , . . . , κη(n)

S , κξ
S .

We define KS(η, ξ) as the joint distribution of σ(0) and σ(n+1), which is indeed a coupling of κη
S and

κξ
S .

The coupling KS(η, ξ) defined above has the following important property, which can be verified
using the triangle inequality for metrics together with the fact that in the above construction the
joint distribution of σ(j−1) and σ(j) is KS(η(j−1), η(j)), by definition. For every region ∆ ⊆ Φ(S),

ρ∆(KS(η, ξ)) ≤
n∑

j=1

ρ∆(KS(η(j−1), η(j))). (6)

Now that a coupled update is defined for any two starting configurations, we can define an
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operator on couplings which, for a given coupling Q, specifies the the result of a coupled update
when starting from two configurations chosen from Q.

Definition 3.1 Let Q be a coupling of two probability distributions µ1 and µ2 on Ω. Define

FS(Q) := Q ·KS =
∑
η,ξ

Q(η, ξ)KS(η, ξ),

where Q(η, ξ) is the measure of the pair (η, ξ) under the joint distribution Q. Equivalently, viewing Q
as a probability distribution on Ω × Ω and KS as a Markov kernel on Ω × Ω, FS(Q) stands for the
distribution resulting from taking one step in the Markov chain defined by KS when the starting state
is chosen according to Q.

Remark: Even though the space of pairs of configurations is infinite, we used a finite sum notation in
Definition 3.1 since in what follows Q will always be a finite distribution, i.e., the support of Q will be a
finite subset of pairs of configurations.

Notice that if K is a coupled update rule for γ, and if Q is a coupling of γσ
Ψ and γτ

Ψ for some
Ψ ⊇

⋃
i∈S Θi and two arbitrary (boundary) configurations σ and τ , then FS(Q) is a coupling of

these two distributions as well. This is because both distributions are stationary under an update
of Θi for any i ∈ S.

As a final piece of notation, F t
S stands for t applications of FS and is the analogue of performing

t coupled steps in a Markov chain.

3.3 Influence on a site

In this subsection we give the proof of Theorem 2.5, namely, that when the influence on every site
is small, the Gibbs measure is unique. Theorem 2.5 is an immediate consequence of the following
theorem.

Theorem 3.2 Let γ be a specification, K a coupled update rule for γ and ρ = {ρx} a collection of
metrics. For any δ > 0, let α = δ +supx

{
Ix← / wB(x)

}
, where Ix← is defined w.r.t. K and ρ. Then, for

every finite region Λ, every positive integer m and any two boundary configurations σ and τ , there is
a coupling Qm of γσ

Λm
and γτ

Λm
s.t. ρΛ(Qm) ≤ c|Λ|αm, where c = maxx∈Λm maxs1,s2∈S ρx(s1, s2) and

the definition of Λm is as in Section 3.1.

Notice that if supx

{
Ix← / wB(x)

}
< 1 as in the hypothesis of Theorem 2.5 then there exists δ > 0

such that α = δ +supx Ix← / wB(x) < 1. Furthermore, for a bounded collection of metrics (as in the
hypothesis of Theorem 2.5), c = maxx∈Λm maxs1,s2∈S ρx(s1, s2) is bounded by a constant indepen-
dent of m. Thus, Theorem 2.5 follows from Theorem 3.2 as explained at the end of Section 3.1.

The proof of Theorem 3.2 is based on the following lemma, which for an update of a random
block gives an upper bound on the average distance at a site x as a function of the initial distances
in the neighborhood of x.

Lemma 3.3 Fix a coupled update rule K and a collection of metrics ρ. Let Q be any coupling, x any
site and S any finite subset of block indices such that B(x) ⊆ S. Then

ρx(FS(Q)) ≤
(

1−
wB(x)

wS

)
ρx(Q) +

Ix←
wS

sup
y∈Φ(B(x))

ρy(Q). (7)

Proof: The idea here is that the first term on the r.h.s. of (7) represents the contribution to the
distance at x when the updated block is not in B(x) (in which case the two spins at x remain
unchanged as does the distance at x) while the second term represents the contribution to the
distance when the updated block is one from B(x), in which case the distance can be bounded by
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the total influence on x times the maximum distance of a site that may influence x, as explained
below. We proceed with the formal proof. By definition,

ρx(FS(Q)) = ρx

∑
η,ξ

Q(η, ξ) KS(η, ξ)

 =
∑
η,ξ

Q(η, ξ) ρx(KS(η, ξ)).

We now recall the notation used in the construction of the path coupling in Section 3.2, i.e., let
z1, . . . , zn enumerate the sites of Φ(S), where n = |Φ(S)|, and for given η and ξ let η = η(0), . . . , η(n)

be the corresponding sequence of configurations. Then, using (6),

ρx(FS(Q)) ≤
∑
η,ξ

Q(η, ξ)
n∑

j=1

ρx(KS(η(j−1), η(j)))

=
1

wS

∑
η,ξ

Q(η, ξ)
n∑

j=1

 ∑
i∈S\B(x)

wiρx(Ki(η(j−1), η(j))) +
∑

i∈B(x)

wiρx(Ki(η(j−1), η(j)))


=

1
wS

∑
η,ξ

Q(η, ξ)

ρx(η, ξ)
∑

i∈S\B(x)

wi +
n∑

j=1

∑
i∈B(x)

wiρx(Ki(η(j−1), η(j)))


=

(
1−

wB(x)

wS

)
ρx(Q) +

1
wS

n∑
j=1

∑
η,ξ

Q(η, ξ)
∑

i∈B(x)

wiρx(Ki(η(j−1), η(j))),

where we made use of the facts that for i /∈ B(x), ρx(Ki(η(j−1), η(j)) = ρx(η(j−1), η(j)) and that∑n
j=1 ρx(η(j−1), η(j)) = ρx(η, ξ). What remains to be shown is that

n∑
j=1

∑
η,ξ

Q(η, ξ)
∑

i∈B(x)

wiρx(Ki(η(j−1), η(j))) ≤ Ix← sup
y∈Φ(B(x))

ρy(Q). (8)

Notice, however, that since η(j−1) and η(j) may differ only at zj then
∑

i∈B(x) wiρx(Ki(η(j−1), η(j))) ≤
ρzj (η

(j−1), η(j))Ix←zj . Thus, the l.h.s. of (8) is bounded by

n∑
j=1

Ix←zj

∑
η,ξ

Q(η, ξ)ρzj (η
(j−1), η(j)) =

n∑
j=1

Ix←zj

∑
η,ξ

Q(η, ξ)ρzj (η, ξ)

=
n∑

j=1

Ix←zjρzj (Q)

≤ sup
y∈Φ(B(x))

{ρy(Q)}
∑

y

Ix←y

= Ix← sup
y∈Φ(B(x))

ρy(Q),

where we used the fact that Ix←y = 0 for y /∈ Φ(B(x)).

Lemma 3.3 is useful since it uses only first order information about Q in order to bound
ρx(FS(Q)), i.e., we only need to know bounds on the average distances at single sites regard-
less of how these distances depend on each other under Q. In the proof of Theorem 3.2 below, we
use Lemma 3.3 iteratively to improve the bounds on single site distances.
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Proof of Theorem 3.2: For the δ given in the theorem, let tm = d
(
wB(Λm−1) / minx∈Λm−1

{
wB(x)

})
ln 1

δ e.
We will show that for any coupling Q, every 0 ≤ k ≤ m, x ∈ Λm−k, and t ≥ ktm,

ρx(F t
B(Λm−1)(Q)) ≤ cαk, (9)

where c and α are as defined in Theorem 3.2. The theorem follows from (9) as explained next.
Take any coupling Q of γσ

Λm
and γτ

Λm
(for example, the product coupling). Then, for every t,

F t
B(Λm−1)(Q) is also a coupling of γσ

Λm
and γτ

Λm
because the update rule is consistent with γ and all

the blocks that might be updated in the process are included in Φ(B(Λm−1)) = Λm by definition.
Thus, by setting t = mtm we get a coupling Qm for which ρx(Qm) ≤ cαm for every x ∈ Λ0 = Λ.
Hence, ρΛ(Qm) ≤ c|Λ|αm, as required.

We go on to prove (9). Notice that the bound in (9) improves as time increases but only when
the distance of x from the boundary increases as well, i.e., we only have to consider sites in Λm−k.
The idea of the proof is that once we have established a bound for sites in Λm−k, we can improve
this bound for a site x ∈ Λm−k−1 by updating a random block from the ones that cover x, since
all the sites that influence x are in Λm−k. The chosen time parameter ensures that we will indeed
update a block from those that cover x with high probability.

The formal proof proceeds by induction on k. The base case (k = 0) is clear since ρx(Q) ≤
maxs1,s2∈S ρx(s1, s2) ≤ c for every x ∈ Λm by definition of c. We assume (9) for k and show for
k+1. Fix an arbitrary x ∈ Λm−k−1. We have to show that for every t ≥ (k+1)tm, ρx(F t

B(Λm−1)(Q)) ≤
cαk+1. Notice that y ∈ Λm−k for every y ∈ Φ(B(x)) and hence we can use the induction hypothesis
together with Lemma 3.3 to get that, for every t > ktm,

ρx(F t
B(Λm−1)(Q)) ≤

(
1−

wB(x)

wB(Λm−1)

)
ρx(F t−1

B(Λm−1)(Q)) +
Ix←

wB(Λm−1)
cαk.

Therefore,

ρx(F t
B(Λm−1)(Q))− Ix←

wB(x)
cαk ≤

(
1−

wB(x)

wB(Λm−1)

)[
ρx(F t−1

B(Λm−1)(Q))− Ix←
wB(x)

cαk

]
and hence, since by the induction hypothesis ρx(F ktm

B(Λm−1)(Q)) ≤ cαk, then for all t ≥ ktm,

ρx(F t
B(Λm−1)(Q)) ≤ Ix←

wB(x)
cαk +

(
1−

wB(x)

wB(Λm−1)

)t−ktm

cαk.

In particular, for all t ≥ (k + 1)tm,

ρx(F t
B(Λm−1)(Q)) ≤ Ix←

wB(x)
cαk + δcαk ≤ cαk+1.

This concludes the proof of (9) and thus completes the proof of Theorem 3.2.

3.4 Influence of a site

In this section we prove Theorem 2.7, namely, that when the influence of every site is small, the
Gibbs measure is unique. In contrast to the proof in the previous section, where we used the bound
on the influence on a site to show that the distance at every site decreases exponentially as we
recede from the boundary, here we will use the bound on the influence of a site to show that the
total distance decreases exponentially. Theorem 2.5 is an immediate consequence of the following
theorem.
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Theorem 3.4 Let γ be a specification, K a coupled update rule for γ and ρ = {ρx} a collection of
metrics. For any δ > 0, let α = δ + supy {I←y} /

(
supy {I←y}+ infy

{
wB(y) − I←y

})
, where I←y

is defined w.r.t. K and ρ. Then, for every region Λ, any positive integer m and any two boundary
configurations σ and τ , there is a coupling Q of γσ

Λm+1
and γτ

Λm+1
s.t. ρΛ(Q) ≤ cαm, where c =

maxη,ξ ρΛm(η, ξ) and Λm is as defined in Section 3.1.

Notice that when ρ is summable then the combination of the conditions supy wB(y) < ∞, infy wB(y) >
0 and supy

{
I←y / wB(y)

}
< 1 in the hypothesis of Theorem 2.7 is equivalent to the condition

supy {I←y} /
(
supy {I←y}+ infy

{
wB(y) − I←y

})
< 1. Therefore, for K and ρ as in Theorem 2.7,

there exists δ > 0 for which α < 1, where α is as defined in Theorem 3.4. Furthermore, the summa-
bility of the collection of metrics in Theorem 2.7 implies that c = maxη,ξ ρΛm(η, ξ) is bounded by a
constant independent of m. Thus, Theorem 2.7 follows from Theorem 3.4 as explained at the end
of Section 3.1.

The proof of Theorem 3.4 is based on the following lemma, which is similar in spirit to Lemma 3.3,
but rather than bounding the average distance at a single site, here we bound the average total dis-
tance in a region ∆ as a function of the initial average total distance in the neighborhood of ∆,
when updating of a random block.

Lemma 3.5 Fix a coupled update rule K and a collection of metrics ρ. Let Q be any coupling, ∆ any
region and S any finite subset of block indices such that B(∆) ⊆ S. Let MAX = maxy∈Φ(B(∆)) {I←y}
and MIN = miny∈Φ(B(∆))

{
wB(y) − I←y

}
. Then

ρ∆(FS(Q)) ≤
(

1− MAX + MIN
wS

)
ρ∆(Q) +

MAX
wS

ρΦ(B(∆))(Q). (10)

Proof: We start by using the path coupling bound (6) to get

ρ∆(FS(Q)) ≤
∑
η,ξ

Q(η, ξ)
n∑

j=1

ρ∆(KS(η(j−1), η(j))), (11)

where n = |Φ(S)| and the sequence of configurations η(j) is as defined in the construction of the
path coupling. In turn, we can bound ρ∆(KS(η(j−1), η(j))) depending on the location of zj (the
only site at which η(j−1) and η(j) may differ) as follows:

ρ∆(KS(η(j−1), η(j))) ≤ ρzj (η
(j−1), η(j))×


I←zj / wS + 1− wB(zj) / wS zj ∈ ∆;
I←zj / wS zj ∈ Φ(B(∆)) \∆;
0 zj /∈ Φ(B(∆)).

(12)
Notice that (12) follows from the fact that KS = (

∑
i∈S wiKi) / wS , the definition of I←zj and

the following four observations. First, when zj ∈ Θi, ρ∆(Ki(η(j−1), η(j))) ≤ ρΘi(Ki(η(j−1), η(j)))
because all the sites outside Θi remain unchanged and thus the coupled spins of all sites outside Θi

agree with certainty in the coupling Ki(η(j−1), η(j)). Second, when zj ∈ ∆ \ Θi then in addition
to the distance at Θi, there may be positive distance at zj , which is not accounted for by the
distance in Θi but which needs to be accounted for as part of the distance in ∆. Thus, in this
case, ρ∆(Ki(η(j−1), η(j))) ≤ ρzj (η

(j−1), η(j)))+ρΘi(Ki(η(j−1), η(j))), where we used the fact that the
distance at zj remains unchanged by the update of Θi. Third, when zj /∈ ∆, ρ∆(Ki(η(j−1), η(j))) ≤
ρΘi(Ki(η(j−1), η(j))) regardless of whether zj ∈ Θi or not because there is no need to count the
distance at zj . Fourth, if zj /∈ Φ(B(∆)) then zj cannot influence the resulting configuration in ∆,
i.e., ρ∆(Ki(η(j−1), η(j))) = 0 for all i. This is because the only updates that may incur a non-zero
distance at ∆ are of blocks for which Θi ∩∆ 6= ∅, but then η(j−1) and η(j) agree on Θi ∪ ∂Θi since
zj /∈ Φ(B(∆)) so the distance in Θi remains zero.
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Now, by plugging the bounds in (12) into the r.h.s. of (11), and since ρzj (η
(j−1), η(j))) =

ρzj (η, ξ) and ρ∆ =
∑

y∈∆ ρy, we get:

ρ∆(FS(Q)) ≤
∑
y∈∆

(
1−

wB(y)

wS
+

I←y

wS

)
ρy(Q) +

∑
y∈Φ(B(∆))\∆

I←y

wS
ρy(Q)

≤

(
1−

miny∈∆

{
wB(y) − I←y

}
wS

)
ρ∆(Q) +

maxy∈Φ(B(∆))\∆ {I←y}
wS

ρΦ(B(∆))\∆(Q)

≤
(

1− MIN + MAX
wS

+
MAX
wS

)
ρ∆(Q) +

MAX
wS

ρΦ(B(∆))\∆(Q)

=
(

1− MIN + MAX
wS

)
ρ∆(Q) +

MAX
wS

ρΦ(B(∆))(Q),

where we used the fact that ρ∆ + ρΦ(B(∆))\∆ = ρΦ(B(∆)).

From here onwards the proof of Theorem 3.4 continues in a very similar manner to that of the
proof of Theorem 2.5, using Lemma 3.5 iteratively to improve the bounds on average distances in
regions.

Proof of Theorem 3.4: For the δ given in the theorem, let tm = d
(
wB(Λm) / miny∈Λm

{
wB(y)

})
ln 1

δ e.
We will show that for any coupling Q, every 0 ≤ k ≤ m, x ∈ Λm−k, and t ≥ ktm,

ρΛm−k
(F t

B(Λm)(Q)) ≤ cαk, (13)

where c and α are as defined in Theorem 3.4. The theorem follows from (13) as explained next.
Take any coupling Q of γσ

Λm+1
and γτ

Λm+1
. Then, as we already explained in the proof of Theo-

rem 3.2, for every t, Q′ = F t
B(Λm)(Q) is also a coupling of γσ

Λm+1
and γτ

Λm+1
. Thus, by setting

t = mtm we get a coupling Q′ for which ρΛ0(Q
′) ≤ cαm, as required since Λ0 = Λ.

We go on to prove (13). The idea of the proof is that once we have established a bound for
the average total distance in Λm−k, we can improve on this bound for the average total distance in
Λm−k−1 by updating a random block.

The formal proof proceeds by induction on k. The base case (k = 0) is clear since ρΛm(Q) ≤
maxη,ξ ρΛm(η, ξ) ≤ c by definition of c. We assume (13) for k and show for k + 1. We have to show
that, for every t ≥ (k+1)tm, we have ρΛm−k−1

(F t
B(Λm)(Q)) ≤ cαk+1. Since Φ(B(Λm−k−1)) = Λm−k,

we can use the induction hypothesis together with Lemma 3.5 to get that for every t > ktm,

ρΛm−k−1
(F t

B(Λm)(Q)) ≤
(

1− MAX + MIN
wB(Λm)

)
ρΛm−k−1

(F t−1
B(Λm)(Q)) +

MAX
wB(Λm)

cαk,

where MAX = maxy∈Λm−k
{I←y} and MIN = miny∈Λm−k

{
wB(y) − I←y

}
. Therefore,

ρΛm−k−1
(F t

B(Λm)(Q))− MAX
MAX + MIN

cαk ≤(
1− MAX + MIN

wB(Λm)

)[
ρΛm−k−1

(F t−1
B(Λm)(Q))− MAX

MAX + MIN
cαk

]
.

Notice that miny∈Λm−k

{
wB(y)

}
≤ MAX + MIN ≤ maxy∈Λm−k

{
wB(y)

}
. In particular, this means

that the factor (1− MAX+MIN
wB(Λm)

) ≥ 0. Now, since by the induction hypothesis ρΛm−k−1
(F ktm

B(Λm)(Q)) ≤
ρΛm−k

(F ktm
B(Λm)(Q)) ≤ cαk, then for all t ≥ ktm,

ρΛm−k−1
(F t

B(Λm)(Q)) ≤ MAX
MAX + MIN

cαk +
(

1− MAX + MIN
wB(Λm)

)t−ktm

cαk

≤ MAX
MAX + MIN

cαk +

(
1−

miny∈Λm−k

{
wB(y)

}
wB(Λm)

)t−ktm

cαk.
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In particular, for all t ≥ (k + 1)tm,

ρΛm−k−1
(F t

B(Λm)(Q)) ≤ MAX
MAX + MIN

cαk + δcαk ≤ cαk+1.

This concludes the proof of (13) and thus completes the proof of Theorem 3.4.

Remark: Notice that if the diameter of all blocks Θi is bounded by some constant r then the region Λm as
defined in Section 3.1 is included in the ball of radius mr around Λ. Thus, if the conditions in our theorems
are satisfied by coupled update rules with blocks of bounded diameter, then not only is the Gibbs measure
unique, but in fact the influence of a boundary condition in finite volume distributions on an inner subset Λ
is exponentially small in the distance of Λ from the boundary.

4 Extensions

4.1 Extending the model

The conditions in Theorems 2.5 and 2.7 are applicable in more general settings as well. First, the
requirement that κη

Θi
(the result of updating the block Θi) depends only on Θi and its boundary

can be relaxed to dependency on sites within a bounded radius r from Θi. The definition of the
sequence {Λm} is then adapted to this setting by letting Λm+1 = β(Λm) ∪ ∂rβ(Λm), where ∂rΛ
stands for the set of sites outside Λ that are within distance r from Λ. The rest of the statements
and the proofs follow unchanged. Using update rules that depend on sites within distance r is useful
when the models have finite range interactions rather than just nearest-neighbor interactions, i.e,
potentials are defined for every subset of diameter at most r rather than just single sites and edges,
which is the case r = 1.

A second observation is that we can omit the restriction that the spin space S is finite, and
instead work with a measurable space S equiped with a σ-algebra B of subsets of S. In this case, the
metrics ρx are required to be measurable functions w.r.t. B×B. Up to minor notational and language
issues involving infinite spaces, our proofs carry through to this setting except that it may no longer
be possible to derive an upper bound on the total variation distance of two distributions when
projected onto SΛ from ρΛ(Q) as we did in (5). However, the rest of our discussion leading to (5)
is still valid. In particular, under our conditions, for arbitrary τ and σ there exists a coupling of γτ

Λm

and γσ
Λm

for which ρΛ(Q) is exponentially small in m. This means that the Kantorovich-Rubinstein-
Ornstein-Vasserstein (KROV) distance (see, e.g., [5] for a definition) between the two distributions
w.r.t. ρΛ is exponentially small in m and in particular, that the limits of the two sequences of
distributions as m →∞ are the same, i.e., the Gibbs measure is unique.

4.2 Markov chains

As was shown in [2] and [20], conditions like the ones in Theorems 2.5 and 2.7 give upper bounds
on the mixing times of the corresponding Markov chains. In this setting the graph G is finite, and
thus there is always a unique Gibbs measure µ. Notice that now the collection of blocks {Θi}
specified by a coupled update rule is finite as well. Let n = |V |, and m =

∑
i wi / minx wB(x).

Given a specification γ and a coupled update rule for γ, the corresponding Markov chain is the one
whose steps are defined as follows. First, a block Θi is chosen at random from the finite set S,
where S is the whole collection of blocks and the probability to choose Θi is proportional to wi.
Then, the configuration in Θi is updated according to κτ

i , where τ is the current configuration. By
definition, µ is a stationary measure of this Markov chain. If µ is the unique stationary measure we
can discuss the mixing time τ(ε) of the chain, defined as the number of steps required to get within
total variation distance ε from µ starting from an arbitrary configuration.
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When the influence on a site is small as in Theorem 2.5, i.e., maxx

{
Ix← / wB(x)

}
< 1, then µ

is necessarily the unique stationary distribution of the above Markov chain and the mixing time
τ(ε) ≤ m

c log(nD1
ε ), where c = 1 −maxx

{
Ix← / wB(x)

}
and D1 = maxx∈V,s1,s2∈S ρx(s1,s2)

minx,s1 6=s2
ρx(s1,s2) . The proof

of this fact is based on Lemma 3.3 in a similar way to the proof of Theorem 2.5 by giving an
upper bound on the distance at any site when running a coupled process. Specifically, for any
initial coupling Q (of two arbitrary distributions), let δt = maxx F t

S(Q). Then Lemma 3.3 yields
δt+1 ≤ (1− c

m)δt. Since δ0 ≤ maxx,s1,s2 ρx(s1, s2), we conclude that the probability that two coupled
configurations on G disagree after t steps is at most nD1(1− c

m)t, and in particular, the mixing time
τ(ε) ≤ m

c log(nD1
ε ). Furthermore, the fact that the variation distance goes to zero at least as fast

as (1− c
m)t means that the spectral gap of the Markov chain is at least c

m .§ We also note that we can
get better bounds for the projected mixing time (see [8] for precise definition). Specifically, when
we require that the probability of disagreement in a subset (rather than the whole graph) be ε, we
obtain the same bound on the mixing time as above, but with n replaced by the size of the subset
and the minimum in the denominator of D1 taken only over sites x that belong to the subset.

When the influence of a site is small in the Markov chain setting, we can use the standard path
coupling argument as in [2] to bound the mixing time. Specifically, if maxy

{
I←y / wB(y)

}
< 1

then µ is necessarily the unique stationary distribution of the Markov chain and the mixing time
τ(ε) ≤ m

c log(D2
ε ), where c = 1 − maxy

{
I←y / wB(y)

}
and D2 = maxη,ξ ρV (η,ξ)

minη 6=ξ ρV (η,ξ) . This bound can

also be derived from Lemma 3.5 by using the fact that V = Φ(B(V )) to get that ρV (F t+1
S (Q)) ≤

(1− c
m)ρV (F t

S(Q)). Since ρV (Q) ≤ maxη,ξ ρv(η, ξ), we get that the probability that the two coupled
configurations disagree after t steps is at most D2(1 − c

m)t, and in particular, the mixing time
τ(ε) ≤ m

c log(D2
ε ). Again, the fact that the variation distance goes to zero at least as fast as (1− c

m)t

means that the spectral gap is at least c
m . Finally, as a side remark, we note that D2 ≥ n since

maxη,ξ ρV (η, ξ) =
∑

x maxs1,s2 ρx(s1, s2) while minη 6=ξ ρV (η, ξ) = minx,s1,s2 ρx(s1, s2).
In many situations, the finite graph G is in fact a subset of an infinite graph. For example, take

any spin system on the integer lattice Zd. We can then consider a Markov chain for sampling from
γτ

Λ , where τ is any boundary condition and Λ is the regular box of side length L centered at 0. It
is important to notice that the fact that the condition in Theorem 2.5 (or 2.7) holds for the infinite
graph does not necessarily imply that the corresponding condition (with the same parameters)
holds when we consider the Markov chain on the finite subset Λ. The reason is that some of
the blocks Θi may intersect Λ without being included in it. Therefore, these blocks cannot be
updated in the Markov chain. But then, if we omit these blocks, the condition need not necessarily
continue to hold. For example, it may be the case that the influence on a site x near the boundary
of Λ is increased because the blocks that include x but are not contained in Λ (“ignored blocks”)
contribute less to the distance at x than an average block does. This issue was already addressed
in [6] and [20], where stronger conditions were given which require that the influence bounds
still hold even if instead of updating an entire block Θi we update any subset of it; this allows
one to add Θi ∩ Λ to the blocks used by the Markov chain and retain the original condition on
total influence. We skip the details here. These stronger conditions also imply what is often called
strong spatial mixing, where correlations decay exponentially with the distance from the portion of
the boundary where the two boundary configurations differ rather than with the distance from the
boundary as a whole. See [6, 20, 14] for more on stronger conditions of this type.

Finally, we mention that the fact that similar conditions imply both the uniqueness of the Gibbs
measure and optimal mixing time of the corresponding Markov chain is part of a more general
framework of relationships between spatial and temporal mixing properties [20, 14, 3, 13, 8, 1]. For

§The spectral gap of a Markov chain with transition matrix P is defined as 1−|λ2|, where λ2 is the second eigenvalue
of P . It is well known (see, e.g., Equation (1.2.5) in [19]) that for any matrix norm ‖ · ‖, limt→∞ ‖P t − P∞‖1/t = |λ2|,
where P∞ is the matrix whose rows are all equal to the stationary distribution µ of P . Hence, if for every initial
configuration of the chain the variation distance from µ goes to zero at least as fast as (1− c

m
)t then clearly |λ2| ≤ (1− c

m
).
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example, optimal projected mixing as mentioned above implies uniqueness of the Gibbs measure
(and an exponential decay with m of the influence of any boundary condition outside Λm, as in
Theorem 3.2) [8].

5 Applications

In this section we illustrate the use of the conditions given in Theorems 2.5 and 2.7 by carrying out
the appropriate calculations for a few specific models in specific ranges of their parameters, thus
showing uniqueness of the Gibbs measure for these models in the appropriate ranges. Although we
do not extend the previously known range of parameters for which the Gibbs measure is unique,
we do extend the range for which finite size conditions of the Dobrushin type hold. In addition,
the examples given here shed additional light on our two conditions and the differences between
them, and might also serve as guiding examples for readers seeking to establish uniqueness of the
Gibbs measure for other models by applying Theorem 2.5 or Theorem 2.7.

The following notation is used in all our examples. Recall that one of the ingredients that needs
to be specified in our conditions is a collection of metrics ρ. All the examples we mention in this
paper use a collection of metrics of the form ρx = uxρδ, where ux ∈ R+ is a weight associated with
site x, and ρδ is the metric that assigns 1 to any pair of distinct spins and 0 to a pair of identical
spins. In particular, for a coupling Q, ρx(Q) is exactly ux times the probability (under Q) that
the two coupled spins at x differ. From here onwards a collection of metrics will be specified by
determining the set of weights ux, and implicitly setting ρx = uxρδ.

5.1 Colorings of biregular bipartite graphs

We start with an example that emphasizes the differences between the two conditions. These
differences are better clarified when the matrix of influences is not symmetric, i.e., the influence
of site y on site x is not the same as that of x on y. An example of a model where this symmetry
is broken is the model of colorings on a tree with alternating branching degrees. In the colorings
model (or antiferromagnetic Potts model at zero temperature) the set of spins S = {1, . . . , q},
where we view each of these values as a distinct color. The edge potentials U{x,y} assign infinite
energy to pairs of the same color and zero energy otherwise, and the single-site potentials Ux are
identically zero. Thus, feasible configurations correspond to proper colorings of the sites, and the
finite region Gibbs distributions are uniform over proper colorings that agree with the boundary
condition. We consider colorings on a tree with alternating branching degrees, i.e., the underlying
graph is the infinite rooted tree in which vertices at even distance from the root have b1 children,
vertices at odd distance from the root have b2 children, and b1 6= b2. The parameters of the model
are thus q and (b1, b2). We apply our conditions to establish that, for q > b1 + b2 + 2, the Gibbs
measure is unique. We give two proofs, one using Theorem 2.5 and the other using Theorem 2.7.
We note that uniqueness for colorings on a tree is known to hold for a wider range of parameters.
For example, when b1 = b2 (the tree is regular of degree b1 +1), the Gibbs measure is unique if and
only if q > b1+1 [11]. However, the range of parameters for which we show uniqueness here is still
larger than that given by the original Dobrushin condition, which is q > 2(max {b1, b2} + 1). (The
calculation using the original Dobrushin condition was first done in [18], and implies uniqueness
for any underlying graph and q > 2 maxx deg(x), where deg(x) stands for the number of neighbors
of x).

In order to use our theorems we need to specify a coupled update rule for the model. For this
example, we use the simple update rule in which each block is a distinct single site, the weights
of the blocks are uniform (e.g., all 1) ¶, and where updates are done according to the heat-bath

¶When each block is a single site (or more generally, when each site is included in exactly one block), allowing general
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rule. We identify a block Θi with the site x it consists of and write κτ
x in place of κτ

i . Notice that for
the colorings model, a heat-bath update means that under κτ

x, the color at x is chosen uniformly
at random from the set of colors not assigned to neighbors of x under τ . Notice also that for
q > max {b1, b2} + 1 (i.e., when the number of colors is larger than the maximum degree of the
graph — as is the case for the range of q we consider), κτ

x as above is well defined even if τ is
infeasible, as required.

In order to complete the specification of our coupled update rule we have to specify how to
couple two updates starting from two configurations that disagree at exactly one site, i.e., we need
to specify Kx(η, ξ) for pairs η and ξ that differ at exactly one site y. We need only specify this
coupling when y is a neighbor of x or y = x because otherwise the coupling is required to be the
one in which the spins at x agree with probability 1. We set Kx(η, ξ) to be a coupling that minimizes
the probability of disagreement between the spins at x. When y = x this simply means the coupling
in which the two resulting configurations agree with certainty (since we use a heat-bath update,
κη

x = κξ
x when η and ξ differ only at x). When y is a neighbor of x, and when the number of colors

available for the update of the spin at x under η is the same as under ξ, the optimal coupling is
described as follows. Suppose that under both configurations the number of available colors at x
is a, and w.l.o.g. that ηy = 1 and ξy = 2. Then, Kx(η, ξ) assigns probability 1/a to the pair of
configurations in which x is colored 2 and 1 respectively, and for each of the other a − 1 available
colors s, Kx(η, ξ) assigns probability 1/a to the pair of configurations in which both spins at x are
colored s. Thus, the probability of disagreement is 1/a. The coupling Kx(η, ξ) takes a similar form
when the number of available colors at x under η is not the same as under ξ (this number may
differ by one) so that in either case, the probability of disagreement at x is 1/a, where a is the
number of available colors at x under the configuration for which the number of available colors is
smaller. In particular, the probability of disagreement is at most 1/(q − deg(x)) (with equality for
at least one pair η, ξ).

The final ingredient we need to specify is the collection of metrics ρ. Since we use a collection
of the form ρx = uxρδ, we only need to specify the weights ux. Although we use non-uniform
weights in order to show uniqueness for the range of parameters mentioned before, it is instructive
to first consider the case in which the ux are uniformly set to 1, which is the setting in the original
Dobrushin condition. Under this setting, Ix←y = 1/(q − deg(x)) since ρx(Kx(η, ξ)) is simply the
probability of disagreement at x under the coupling Kx(η, ξ). Thus, supx Ix← = supx

deg(x)
q−deg(x) =

max
{

b1+1
q−b1−1 , b2+1

q−b2−1

}
. Recall that for the collection of blocks we use, wB(x) = 1 for every x

since each site is covered by exactly one block whose weight is 1. Thus, using Theorem 2.5 (or
equivalently, the original Dobrushin condition) we get that the Gibbs measure is unique in the
range of parameters that satisfy max

{
b1+1

q−b1−1 , b2+1
q−b2−1

}
< 1, i.e., for q > 2(max {b1, b2}+ 1).

We pause to observe that the colorings model with the above choices of update rule and collec-
tion of metrics is a good example of the fact that influence on and of a site may differ. First, since
neighboring sites have different degrees, Ix←y 6= Iy←x. Furthermore, for a site y with b1 children,
the total influence of y is I←y = b1+1

q−b2−1 . (This is because y has b1 + 1 neighbors, and the influence
of y on each is 1 / (q − b2 − 1) because the degree of each neighbor is b2 + 1.) Thus, the maximum
total influence is supy I←y = max

{
b1+1

q−b2−1 , b2+1
q−b1−1

}
, which is less than the maximum total influ-

ence on a site when b1 6= b2. Notice also that we cannot use the above uniform collection of metrics
in order to show uniqueness using the condition based on total influence of a site (Theorem 2.7)
because this condition requires that the collection of metrics be bounded, and a uniform collection

sets of weights {wi} does not add any generality to our conditions, i.e., for any coupled update rule using a collection of
blocks of the above type, the satisfiability of the conditions in Theorems 2.5 and 2.7 is unaffected when changing the set
of weights to be uniformly 1. This is because, when each site is covered by exactly one block, the quantity Ix← / wB(x)

in Theorem 2.5 is independent of the choice of weights, and the condition in Theorem 2.7 is not affected if we absorb
the weights wi into the collection of metrics ρ.
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is clearly not bounded.
We now go on to establish uniqueness of the Gibbs measure for q > b1 + b2 + 2, improving on

the range of parameters for which uniqueness is obtained using the original Dobrushin condition.
We give two proofs of this fact, using Theorems 2.5 and 2.7 respectively. For each proof we use
a different set of weights ux. We start with the condition based on the total influence on a site
(Theorem 2.5). As is apparent from the analysis of the setting in which ux is uniform, there is room
for improvement since the total influence on sites of the larger degree is larger than on those of
the smaller degree. We give the two types of sites different weights in order to balance the total in-

fluence they get. Let ux =
√

q−deg(x)
deg(x) . This yields Ix←y = ux

uy(q−deg(x)) =
√

deg(y)
(q−deg(y))(q−deg(x))deg(x) ,

and therefore, Ix← =
√

(b1+1)(b2+1)
(q−b1−1)(q−b2−1) for every x. Thus, using Theorem 2.5, the Gibbs measure

is unique in the range of parameters for which the last expression is < 1, i.e., for q > b1 + b2 + 2.
We now give the second proof of uniqueness for the above range of parameters, this time

using the condition based on the total influence of a site (Theorem 2.7). In order to use this
condition, we have to set the weights ux so that they yield a summable collection of metrics, i.e.,∑

x ux has to be finite. In addition, we optimize the weights to minimize the maximum total
influence of a site, i.e., we balance the total influence of different sites. In the resulting choice of
weights, ux depends on (and is determined by) the distance of x from the root of the tree. We thus

write u` for the weight of a site at distance ` from the root. Set u2` = [(1 + ε)b1b2]−`
√

q−b1−1
b1+1 and

u2`+1 = 1
b1

[(1 + ε)b1b2]−`
√

q−b2−1
b2+1 , where ε > 0 is a small enough constant to be determined later.

Clearly,
∑

x ux is finite because the total weight at level ` is proportional to (1 + ε)−b`/2c. We go on
to calculate the influence of a site under this choice of weights. Consider a site y at distance 2` from
the root. This site influences its parent as well as its b1 children. The probability of disagreement
under the relevant coupling is 1/(q − b2 − 1) for both the parent and the children, but observe that
the weight of the parent differs from that of the children. Specifically,

I←y =
u2`−1

u2`(q − b2 − 1)
+ b1

u2`+1

u2`(q − b2 − 1)

=
(1 + ε)b2 + 1
q − b2 − 1

√
(b1 + 1)(q − b2 − 1)
(q − b1 − 1)(b2 + 1)

≤ (1 + ε)

√
(b1 + 1)(b2 + 1)

(q − b1 − 1)(q − b2 − 1)
.

For y at distance 2` + 1 from the root, a similar calculation gives the slightly better bound I←y ≤√
(b1+1)(b2+1)

(q−b1−1)(q−b2−1) . Applying Theorem 2.7, we conclude that the Gibbs measure is unique in the

range of parameters for which there exists ε > 0 such that (1 + ε)
√

(b1+1)(b2+1)
(q−b1−1)(q−b2−1) < 1, i.e., for

q > b1 + b2 + 2.
We conclude this subsection by observing that the result obtained here (uniqueness for q >

b1 + b2 + 2) holds for any (b1 + 1, b2 + 1)-biregular bipartite graph, i.e., for any bipartite graph
on vertex set V1 ∪ V2 in which vertices in V1, V2 have degrees b1, b2 respectively. Indeed, if we
examine the first of the two proofs we gave for the tree (the one using total influence on a site),
we see that the only structure of the graph that we used is that for any site, either its degree is
b1 + 1 and all its neighbors are of degree b2 + 1, or its degree is b2 + 1 and all its neighbors are of
degree b1 + 1. This property holds for any bipartite graph of the above type. We are unaware of
any literature discussing colorings of biregular bipartite graphs, and we believe the above bound
to be the best known for general graphs of this type (specifically, for those that are not trees).
The only previously known bound available for graphs of this type is the one obtained from the
original Dobrushin condition (which holds for any graph). As mentioned before, this bound is
q > 2 supx deg(x) = 2(max {b1, b2}+ 1), and our bound improves on this for b1 6= b2.
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5.2 Ising model on a regular tree

The next model we discuss is the Ising model (as defined in Example 1) on the infinite b-ary tree
(in which every vertex except the root has degree b + 1). Recall that in this model the parameters
are the inverse temperature β, the external field h, and the branching degree of the tree b. In this
model, the range of parameters for which the Gibbs measure is unique is known exactly [17, 9].
Specifically, there exists a critical temperature β0(b) = 1

2 ln( b+1
b−1) such that for β ≤ β0 the Gibbs

measure is unique for all external fields h. For β > β0, there exists a known critical value hc(β, b) >
0 such that the Gibbs measure is unique if |h| > hc, and there are multiple Gibbs measures if
|h| ≤ hc. We will show that both our conditions hold throughout the supercritical regime (i.e., for
β > β0 and arbitrary h, or β ≤ β0 and |h| > hc), an evidence of the tightness of our conditions.
We compare this with the range of parameters for which the original Dobrushin condition holds,
which is β > 1

2 ln( b+2
b ) and arbitrary h. The update rule we use in our proofs is a heat-bath update

of a finite subtree. This illustrates another new feature of our conditions, i.e., allowing updates of
finite subsets on any graph. As part of our discussion, we also show that the respective restrictions
on the collections of metrics in Theorems 2.5 and 2.7 are both necessary. This is done by giving a
coupled update rule and collections of metrics that satisfy the conditions in these theorems except
for the respective restrictions on the collection of metrics, for some β > βc and h = 0, i.e., in the
regime where there are multiple Gibbs measures.

5.2.1 Single-site updates

We start by considering the heat-bath update rule on single sites and the uniform collection of
metrics (where ux = 1 for all x), which is the setting in the original Dobrushin condition. Recall
that a heat-bath update simply means that κτ

x = γτ
x . For η and ξ that differ at a single site y, we set

Kx(η, ξ) as the optimal coupling of γη
x and γξ

x, i.e., ρx(Kx(η, ξ)) = ‖γη
x − γξ

x‖x. Notice that if y = x

then Kx(η, ξ) = 0 because then γη
x and γξ

x are the same. If y is a neighbor of x, it is well known
(e.g., [1, 15]) that ‖γη

x − γξ
x‖x ≤ eβ−e−β

eβ+e−β (with equality if the spins of the neighbors of x other

than y are divided equally between pluses and minuses). Thus, Ix←y ≤ eβ−e−β

eβ+e−β (with equality if the

degree of x is odd), and the total influence on any site x is Ix← ≤ (b+1) eβ−e−β

eβ+e−β . Using Theorem 2.5
(or, equivalently, the original Dobrushin condition), this immediately establishes uniqueness of the
Gibbs measure for β such that (b + 1) eβ−e−β

eβ+e−β < 1, i.e., for β < 1
2 ln( b+2

b ), and arbitrary h. For the
same range of parameters, it is also easy to see that the dual condition in Theorem 2.7 holds for
the same coupled update rule, but setting ux = [(1 + ε)b]−|x|, where |x| stands for the distance of x
from the root of the tree and ε is a small enough constant (this is needed in order for the collection
of metrics to be summable).

We now use the simple coupled update rule described above in order to show that the restric-
tions imposed on the collection of metrics used in Theorems 2.5 and 2.7 respectively are necessary.
We start with Theorem 2.5. Consider the collection of metrics resulting from setting ux = (

√
b)|x|.

This is clearly not a bounded collection because ux grows to infinity with the distance of x from
the root of the tree. Since now the weight of a site is

√
b times the weight of its parent, it is easy to

see that for every x, Ix← ≤ [b · 1√
b

+ 1 ·
√

b] eβ−e−β

eβ+e−β = 2
√

b eβ−e−β

eβ+e−β . Thus, for this choice of weights,

supx Ix← < 1 for β < 1
2 ln(2

√
b+1

2
√

b−1
). However, since 1

2 ln(2
√

b+1
2
√

b−1
) > 1

2 ln( b+1
b−1) for b > 4, for this choice

of weights the range of parameters for which the condition holds includes values for which the
Gibbs measure is not unique. We thus conclude that the requirement that the collection of metrics
be bounded is necessary for Theorem 2.5 to hold.

We go on to consider Theorem 2.7, and show that the requirement that the collection of metrics
be summable is necessary for this Theorem to hold. Consider the same coupled update rule as
above, but set the weights ux = (

√
b)−|x|. Although this collection is bounded, it is not summable
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because the total weight of sites at distance ` from the root is (
√

b)`, which goes to infinity with `.
A calculation similar to that in the previous paragraph gives that supy I←y < 2

√
b eβ−e−β

eβ+e−β . Hence, as
before, for this choice of weights supy I←y < 1 for some values of β for which the Gibbs measure
is not unique. We thus conclude that the requirement that the collection of metrics is summable is
necessary in Theorem 2.7.

A slight modification of the last example shows that the requirement that supy wB(y) is finite is
also necessary in Theorem 2.7. Recall that so far, we only used collections of blocks in which the
weights were uniformly set to 1. In fact, in the rest of the applications in this paper we continue
to only use collections of this type, except here, where we wish to demonstrate the necessity of
the restriction that supy wB(y) is finite. Thus, consider the coupled update rule from the last two
paragraphs, with metric weights ux = [(1 + ε)b]−|x| (so the collection of metrics is summable),
except that now the weight of a block wx = [(1 + ε)

√
b]|x|. Since each site y is included in the

unique block Θy = {y}, B(y) consists of only this block and wB(y) = wy. Thus, the above choice of
block weights violates the requirement that supy wB(y) is finite because wy grows to infinity with |y|.
In addition, it is easy to see that the quantity supy

{
I←y / wB(y)

}
remains exactly the same as in the

example of the previous paragraph because the product wxux is unchanged for all x, and since the
coupled update rule is the same (up to the change of weights). We thus conclude as in the previous
paragraph that the requirement that supy wB(y) is finite is necessary in Theorem 2.7.

5.2.2 Sharp uniqueness bounds using larger blocks

We now go on to show that both our conditions hold throughout the supercritical regime of param-
eters by considering updates of finite sub-trees.

Theorem 5.1 In the Ising model on the regular b-ary tree, for the following regimes of parameters
there exist a coupled update rule and a collection of metrics that satisfy the condition in Theorem 2.5:

(i) β < β0 and arbitrary h;

(ii) β ≥ β0 and |h| > hc(β).

Furthermore, for the same regimes of parameters, there exists a collection of metrics that together with
the above coupled update rule satisfies the condition in Theorem 2.7.

Proof: We will only give the proof for regime (i). The proof for regime (ii) goes by a similar but
slightly more involved argument, which we sketch at the end. The coupled update rule we use
is based on a heat-bath update of a finite size complete subtree. Thus, the collection of blocks
is constructed as follows. For every site z, let Θz be the complete subtree of height ` − 1 rooted
at z, where ` is a (large enough) constant to be determined later. Notice that Θz consists of `
levels (including the level of z itself). The collection of blocks includes Θz for every z, plus the
`− 1 blocks which are the complete subtrees of height 0, 1, . . . , `− 2 respectively, rooted at the root
of the original infinite tree (for convenience, we think of these extra blocks as subtrees rooted at
imaginary ancestors of the root of the original tree). The addition of the extra blocks guarantees
that every site is covered by exactly ` blocks. As usual, the weight of every block is set to 1.

As before, we write κη
z for the distribution resulting from an update of Θz. Since we use a

heat-bath update, κη
z = γη

Θz
. We need to specify the coupling Kz(η, ξ), where η and ξ differ at

exactly one site y ∈ Θz ∪ ∂Θz. If y ∈ Θz then Kz(η, ξ) is defined as the coupling in which the two
configurations agree with certainty. For y ∈ ∂Θz we use the optimal coupling as constructed in [1]
and later in [15]. In particular, this coupling is constructed recursively along paths of the tree, such
that for every x ∈ Θz, the probability of disagreement at x under Kz(η, ξ) is ≤ ( eβ−e−β

eβ+e−β )|x−y|, where
|x− y| stands for the graph distance between x and y.
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Consider now the uniform collection of metrics where ux = 1 for every x. We note that for this
choice of weights, if x ∈ Θz then ρx(Kz(η, ξ)) ≤ ( eβ−e−β

eβ+e−β )|x−y|, for η and ξ that disagree only at
y ∈ ∂Θz. We go on to calculate the influence a site y has on site x. First, observe that if |y − x| > `
then Ix←y = 0. If |y − x| ≤ ` (and y 6= x) then there is exactly one block Θz through which y
influences x. This is because y is on the boundary of exactly b + 1 blocks, namely the b blocks
rooted at each of the children of y, and the block rooted at the ancestor ` levels above y. Thus, if x
is an ancestor of y, then y influences x through Θz if and only if z is the ancestor ` levels above y.
If x is a descendent of y, then y influences x through Θz if and only if z is the child of y that is the
ancestor of x (and z = x if x is an immediate child of y). We conclude that Ix←y ≤ ( eβ−e−β

eβ+e−β )|x−y|.
Thus, for every x,

Ix← =
∑

y

Ix←y ≤ b + 1
b

∑̀
j=1

(
b
eβ − e−β

eβ + e−β

)j

.

Now, since each site is included in exactly ` blocks then wB(x) = ` for every x. Thus, the above
coupled update rule satisfies the condition in Theorem 2.5 if Ix← < ` for every x. However, for
β < 1

2 ln( b+1
b−1), eβ−e−β

eβ+e−β < 1
b . Thus, for this range of β, Ix← is bounded by a constant independent

of `, and hence Ix← < ` for a large enough ` (depending on β), as required.
We go on to show that for the same range of parameters of the Ising model, there exists a

collection of metrics which together with the above coupled update rule satisfies the condition in
Theorem 2.7. Here we need to have a summable collection of metrics, and for this purpose we set
ux = [(1+ε)b]−|x|, where ε > 0 is a small enough constant (which may depend on (β, b) but not on `)
to be set later. Let us calculate I←y for this collection of metrics. As before, it is enough to show that
I←y is bounded by a constant independent of `. First, notice that for the above choice of weights,
the total weight of the sites below y is at most a constant times uy, so the contribution to I←y of the
blocks immediately below y is bounded by a constant even if the spins of all sites included in these
blocks disagree with certainty. We still need to consider the block above y. Let z be the ancestor `
levels above y. We need to show that ρΘz(Kz(η, ξ)) is bounded by uy times a constant independent
of `, for every η and ξ that differ only at y. Since the coupling we use was constructed recursively
(see [1, 15]), a disagreement at a site x ∈ Θz can occur only if all the sites on the path from y
to x have disagreeing spins. Combining this with the fact that for every site x, the total weight of
sites below x is at most a constant times ux, we see that ρΘz(Kz(η, ξ)) is bounded by a constant
times the average total distance along the path from y to z. It is therefore enough to show that the
average total distance along this path is at most a constant (independent of `) times uy. Notice that
the weight of an ancestor j levels above y is uy[(1 + ε)b]j , but that the probability of disagreement
at that site under Kz(η, ξ) is at most ( eβ−e−β

eβ+e−β )j . Thus, the above distance along the path is at most

uy
∑`

j=1[(1 + ε)b eβ−e−β

eβ+e−β ]j , which is bounded by a constant times uy if β < 1
2 ln( b+1

b−1) and ε is small

enough (such that (1 + ε) eβ−e−β

eβ+e−β < 1
b ), as required.

We conclude with a few comments about the proof for regime (ii). Notice that in the proof for
regime (i) (for both conditions) the crucial properties we used were that for η and ξ that differ
only at y, the probability of disagreement at x ∈ Θz under Kz(η, ξ)) is at most ( eβ−e−β

eβ+e−β )|x−y|, and

that eβ−e−β

eβ+e−β < 1
b for β as in regime (i). In regime (ii), the latter bound no longer holds. However,

using methods that are outside the scope of this paper, it is possible to show that for supercritical
values of the parameters as in regime (ii), there exist constants c and γ < 1

b such that the above
probability of disagreement is at most cγ|x−y|. From there onwards the proof for both conditions
proceeds as for regime (i). For reading on the methods used for bounding the above probability
by cγ|x−y|, we refer to [16], where these methods were used to show that in the hard-core model,
γ ≤ 1

b throughout the uniqueness regime of that model.
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Remark: The fact that our conditions hold throughout the uniqueness regime (except at the critical point)
is not specific to the Ising model and holds for a number of other models on the regular b-ary tree. In
particular, the heat-bath update of complete subtrees of height `−1 for large enough ` satisfies our conditions
throughout the uniqueness regime of a number of other models on a regular tree. These include the hard-
core model, the colorings model and the ferromagnetic Potts model. See [16] for the relevant calculations.

5.3 Independent sets of graphs of subexponential growth

In this subsection we discuss an update rule for the hard-core (independent sets) model (defined
in Example 2) that was presented and analyzed in [7] in the context of Markov chains, where
it was shown to mix in time O(n log n) for λ < 2

∆−2 , where ∆ is the maximum degree of the
underlying graph. We put this analysis in the context of our conditions, showing that they are
satisfied by the above update rule for the same range of parameters if the underlying graph is of
subexponential growth. The fact that the Gibbs measure is unique for this range of parameters on
graphs of subexponential growth is not new because there is an independent argument (see, e.g.,
[8]) that states that if a model on a graph of subexponential growth admits a Markov chain that
uses bounded diameter blocks (as does the one in [7]) and mixes in O(n log n) time, then the Gibbs
measure is unique. Our motivation for discussing this update rule is twofold. First, it is an example
of an interesting update rule that is more sophisticated than heat-bath. Second, it illustrates how
an analysis that was carried out in the context of Markov chains in order to establish O(n log n)
mixing time can also be used in order to show that our conditions hold w.r.t. the same update rule
and choice of parameters (but only for graphs of subexponential growth).

Before going on to our analysis, we mention some other known bounds for the hard-core model.
For general graphs, the best known bound is that achieved by the original Dobrushin condition,
which establishes uniqueness for λ < 1

∆−1 . For the special case in which the underlying graph
is the square integer lattice Z2 (which is, of course, of subexponential growth), the best known
bound [12] is that the Gibbs measure is unique for λ < 1.185. The proof in [12] is computer-assisted
and uses the Dobrushin-Shlosman condition, i.e., a special case of Theorem 2.7 above, where
updates are heat-bath of k × k squares for some k. When the underlying graph is a regular tree
(obviously not of subexponential growth), the uniqueness regime is completely known. Specifically,
on a regular tree, the Gibbs measure is unique if and only if λ ≤ (∆−1)∆−1

(∆−2)∆
.

We start our analysis with a general discussion of how to convert an analysis of the type carried
out in [7] to our setting. The analysis in [7] is based on path coupling, where a coupling of an
update is given for every pair of current configurations that differ at exactly one site, and it is shown
that the average Hamming distance between the two resulting configurations is strictly less than 1,
i.e., the distance decreases. Translating to our notation, using Hamming distance is equivalent to
setting ux = 1 for every x, and the fact that the distance decreases in every step is equivalent
to I←y − wB(y) < 0 for every site y, or equivalently, I←y / wB(y) < 1. Thus, this coupled update
rule satisfies the condition in Theorem 2.7, except that the (uniform) collection of metrics is not
summable. However, as we already explained in the remark following Theorem 2.7, if the update
rule uses blocks of bounded diameter and if the underlying graph is of sub-exponential growth,
then the uniform metric can be modified to be summable while still maintaining I←y / wB(y) < 1
for every site y. (Recall that a graph is said to be of subexponential growth if the volume of balls
in the graph grows subexponentially with their radius, or equivalently, if there exists a vertex x0

such that for every ε > 0,
∑

y(1 + ε)−|x0−y| is finite, where |x0 − y| stands for the graph distance
between x0 and y.)

From here onwards we repeat the description and analysis w.r.t. the uniform collection of
metrics of the update rule given in [7], but we do it using our terminology. Recall that in the hard-
core model a configuration specifies a subset of occupied sites. It is therefore useful to write η∪{x}
for the configuration in which the subset of occupied sites is as in η, except that x is also occupied.
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Similarly, η \ {x} stands for the configuration in which x is not occupied. The collection of blocks
we use for the update rule is as follows: there is a block Θz for every site z, and Θz consists of z
and all neighbors of z. As usual, the weight of each block is set to 1. As before, since blocks are
indexed by sites, we write κτ

z for the distribution of an update of Θz in current configuration τ . The
result of an update of Θz depends on the current configuration on the neighbors of z. Specifically,
κτ

z is defined as the distribution resulting from the following update of Θz:

• If all the neighbors of z are unoccupied under τ : with probability λ
1+λ the resulting configu-

ration is τ ∪ {z}, and with probability 1
1+λ the resulting configuration is τ \ {z}.

• If at least two of the neighbors of z are occupied under τ : the resulting configuration is
deterministically set to τ \ {z}.

• If exactly one neighbor of z is occupied under τ , say this is x: with probability λ
4(1+λ) the

resulting configuration is (τ \ {x}) ∪ {z}, and with probability 1 − λ
4(1+λ) , the resulting con-

figuration is τ \ {z}.

Notice that κτ
z is defined for all τ , not just feasible ones. (In [7], the update was defined only

for feasible current configurations τ‖.) It is easy to verify that γτ
Θz

is stationary w.r.t. κz for every
feasible τ (since κz is reversible w.r.t. γτ

Θz
for every feasible τ).

From the definition above it is easy to see that κτ
z depends neither on the spin of z itself nor

on the configuration on ∂Θz, i.e., it depends only on the configuration of the neighbors of z. With
that in mind, we go on to define the coupling Kz(η, ξ) for pairs (η, ξ) the differ only at y, where
y ∈ Θz ∪ ∂Θz. Since κτ

z does not depend on τz or on τ∂Θz , in case y = z or y ∈ ∂Θz we define
Kz(η, ξ) as the coupling in which the two configurations agree on Θz with probability 1. When
y ∈ Θz and y 6= z, i.e., y is a neighbor of z, Kz(η, ξ) is defined as follows. Recall that η and ξ agree
on all sites other than y and assume w.l.o.g. that y is occupied under η and unoccupied under ξ.
Kz(η, ξ) is then defined according to the number of neighbors of z other than y that are occupied:

• If two or more of the neighbors of z other than y are occupied then both κη
z and κη

z are
deterministic, so there is a unique coupling of these two distributions. This is the coupling in
which, with probability one, the resulting pair of configurations is (η \ {z} , ξ \ {z}). Notice
that in this case ρΘz(Kz(η, ξ)) = 1.

• If exactly one neighbor other than y is occupied (say, x is the occupied neighbor) then κη
z is

still deterministic so there is a unique coupling of κη
z and κξ

z, the one in which with probability
1− λ

4(1+λ) the resulting pair of configurations is (η \ {z} , ξ \ {z}), and with probability λ
4(1+λ)

the resulting pair is (η \ {z} , (ξ \ {x}) ∪ {z}). Notice that in this case ρΘz(Kz(η, ξ)) = 1 −
λ

4(1+λ) + 3 λ
4(1+λ) = 1 + λ

2(1+λ) .

• If all neighbors of z other than y are unoccupied then Kz(η, ξ) is the following coupling. With
probability 1

1+λ the resulting pair is (η \{z} , ξ \{z}), with probability 3λ
4(1+λ) the resulting pair

is (η \ {z} , ξ ∪ {z}), and with probability λ
4(1+λ) the resulting pair is ((η \ {y})∪ {z} , ξ ∪ {z}).

Notice that (η \ {y}) ∪ {z} = ξ ∪ {z} and hence ρΘz(Kz(η, ξ)) = 1
1+λ + 2 3λ

4(1+λ) = 1 + λ
2(1+λ)

in this case.

We conclude that ρΘz(Kz(η, ξ)) ≤ 1+ λ
2(1+λ) if y is a neighbor of z, and ρΘz(Kz(η, ξ)) = 0 otherwise.

In particular, I←y = deg(y)(1 + λ
2(1+λ)).

‖Strictly speaking, for the hard-core model, it is possible to slightly modify our construction of the path coupling in
Section 3.2 so that it would be enough to define the update rule (and the couplings Kz) only for feasible configurations.
Nevertheless, we define the update rule for any current configuration τ so that we can use the general form of our
theorems.
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Now, since y is included in deg(y) + 1 blocks (which are Θy, and Θz for every neighbor z of y),
wB(y) = deg(y) + 1. Thus, I←y / wB(y) = deg(y)(1 + λ

2(1+λ))/(deg(y) + 1), and supy I←y / wB(y) <

1 if deg(y)λ
2(1+λ) < 1 for every y, i.e., if λ < 2

∆−2 . Hence, using Theorem 2.7 and the explanation
at the beginning of this subsection, the hard-core model with activity parameter λ on graphs of
subexponential growth of maximum degree ∆ admits a unique Gibbs measure for λ < 2

∆−2 .

Remark: Notice that for the update rule described in this subsection, I←y <
∑

x Ix←y. In other words, it
was crucial for our analysis that in the definition of I←y, the quantification over configurations is taken only
once before summing over x, rather than quantifying separately for each x. To see this, recall our analysis of
the distance ρΘz

(Kz(η, ξ)), and notice that for every pair of configurations (η, ξ), there can be at most one
site x other than z and y for which ρx(Kz(η, ξ)) > 0 (specifically, this can only happen if x is the unique
neighbor of z other than y that is occupied). However, when calculating

∑
x Ix←y we need to consider the

worst pair of configurations for each x separately, and hence the coupling Kz contributes to the distance at
all neighbors x of z. The last observation follows from the fact that for each x, we have to consider the pair
of configurations in which x is the unique occupied neighbor of z other than y. When one considers the total
influence on a site w.r.t. the above update rule, a similar issue arises. In particular, Iy← =

∑
x Iy←x > I←y, so

we cannot use the same update rule in order to establish uniqueness of the Gibbs measure using Theorem 2.5
(which would apply to any underlying graph) for the same range of parameters. In fact, w.r.t. the above
update rule, the condition based on the total influence on a site holds for an even smaller range of parameter
values then the single-site Dobrushin condition.

References

[1] N. BERGER, C. KENYON, E. MOSSEL and Y. PERES, “Glauber dynamics on trees and hyperbolic
graphs,” preprint, 2003. For a short version see C. KENYON, E. MOSSEL and Y. PERES, “Glauber
dynamics on trees and hyperbolic graphs,” Proc. 42nd IEEE Symp. on Foundations of Computer
Science (2001), pp. 568–578.

[2] R. BUBLEY and M.E. DYER, “Path coupling: a technique for proving rapid mixing in markov
chains,” Proc. of the 38th IEEE Symp. on Foundations of Computer Science, (1997), pp 223–231.

[3] F. CESI, “Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs
random fields,” Probability Theory and Related Fields 120 (2001), pp. 569–584.

[4] R.L. DOBRUSHIN, “Prescribing a system of random variables by the help of conditional distri-
butions,” Theory Prob. and its Appl. 15 (1970), pp. 469–497.

[5] R.L. DOBRUSHIN and S.B. SHLOSMAN, “Constructive criterion for the uniqueness of a Gibbs
field,” in: J. FRITZ, A. JAFFE, D. SZASZ, Statistical mechanics and dynamical systems, Birkhauser,
Boston (1985), pp. 347–370.

[6] R.L. DOBRUSHIN and S.B. SHLOSMAN, “Completely Analytical Gibbs Fields,” in: J. FRITZ,
A. JAFFE, D. SZASZ, Statistical mechanics and dynamical systems, Birkhauser, Boston (1985),
pp. 371–403.

[7] M. DYER and C. GREENHILL, “On Markov chains for independent sets,” J. Algorithms 35
(2000), pp. 17–49.

[8] M. DYER, A. SINCLAIR, E. VIGODA and D. WEITZ, “Mixing in time and space for lattice spin
systems: A combinatorial view,” Random Structures and Algorithms 24 (2004), pp. 461–479.

[9] H.-O. GEORGII, Gibbs Measures and Phase Transitions, de Gruyter, Berlin (1988).
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