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1 Introduction

1.1 Spin systems on trees

Spin systems capture a wide range of probabilistic models studied in statistical physics, applied

probability, artificial intelligence and elsewhere. A (nearest neighbor) spin system on a graph G =
(V,E) is specified by a finite set S of spin values, a symmetric pair potential U : S × S → R ∪ {∞},

and a singleton potential W : S → R. A configuration σ ∈ SV of the system assigns to each

vertex (site) x ∈ V a spin value σx ∈ S. The probability of finding the system in configuration σ is

determined by the Gibbs distribution

µ(σ) ∝ exp
[
−

(∑
xy∈E

U(σx, σy) +
∑

x∈V
W (σx)

)]
.

Thus the pair potential specifies the likelihood of seeing a given pair of spins at adjacent sites,

while the singleton potential specifies the likelihood of seeing a given spin. Note that setting

U(s1, s2) = ∞ corresponds to a hard constraint, i.e., spin values s1, s2 are forbidden to be adjacent.

We denote by Ω ⊆ SV the set of all valid spin configurations, i.e., those for which µ(σ) > 0. We

will give several concrete examples in a moment.

Usually G is a finite portion of some regular lattice, such as Z
d. In this paper we concentrate on

what is known in statistical physics as the Bethe lattice T
b, i.e., G is a complete rooted tree in which

each interior vertex has b ≥ 2 children.1 Spin systems on trees are not only a useful simplification

of their more classical counterparts on Z
d, but have recently attracted a lot of attention in their own

right as the canonical example of models on “non-amenable” graphs (i.e., those whose boundary is

of comparable size to their volume) — see, e.g., [1, 2, 4, 10, 17].

A boundary condition corresponds to fixing the spins at the leaves of G to some specified values

(e.g., all are set to the same value s). This allows us to formalize the central concept of a phase

transition. If we let the size of the tree G grow to infinity, the Gibbs distribution tends to a limit

known as the (infinite-volume) Gibbs measure. This limit may or may not depend on the boundary

condition: i.e., there may be either a unique Gibbs measure, or multiple Gibbs measures (“phases”)

corresponding to different boundary conditions. Informally, the existence of multiple Gibbs mea-

sures corresponds to the fact that the spin configuration on the leaves can have a non-zero influence

on the spin at the root even as the depth of the tree tends to infinity. A phase transition occurs when

an infinitesimal change in the potentials leads to a switch from a unique Gibbs measure to multiple

Gibbs measures. See, e.g., [9] for more background.

We now illustrate the above ideas with some concrete examples. The following four spin sys-

tems are among the most widely studied in the literature, and will serve as the motivating examples

in this paper:

The (ferromagnetic) Ising model

There are two spin values S = {±1}, and the potentials are U(s1, s2) = −βs1s2, W (s) = −βhs,

where β is the inverse temperature and h is the external field. Thus Ω = {±1}V . The Gibbs

distribution µ assigns higher weight to configurations in which many neighboring spins are aligned

with one another. This effect increases with β, so that at high temperatures (low β) the spins

behave almost independently, while at low temperatures (high β) large connected regions of equal

spins tend to form. There is also a global tendency for spins to align with the sign of the external

field.

1Strictly speaking, in the Bethe lattice all vertices (including the root) have degree b + 1; for convenience we assume

that the root has degree b. This difference is purely technical and does not affect our results.

1



In fact, as is well known [25], when h = 0 a phase transition occurs at the critical value

β = β0 = 1
2 ln( b+1

b−1 ); in other words, in the “high temperature” region β ≤ β0 there is a unique

Gibbs measure independent of the boundary condition, but as soon as β > β0 we get (at least) two

different Gibbs measures corresponding to the (+)- and (−)-boundary conditions respectively; i.e.,

if the leaves are (+) then the root has probability bounded away from 1
2 of being (+).2

The hard-core model (independent sets)

This has been used in statistical physics as a model of lattice gases [9], and also in other areas such

as the modeling of communication networks [15]. Again there are just two spins S = {0, 1}, and

we refer to a site as occupied if it has spin value 1 and unoccupied otherwise. The potentials are

U(1, 1) = ∞, U(1, 0) = U(0, 0) = 0, W (1) = L and W (0) = 0, where L ∈ R. The hard constraint

here means that no two adjacent sites may be occupied, so Ω can be identified with the set of all

independent sets in G. Also, the aggregated potential of a valid configuration is proportional to the

number of occupied sites. Hence the Gibbs distribution takes the simple form µ(σ) ∝ λN(σ), where

N(σ) is the number of occupied sites and the parameter λ = exp(−L) > 0, which controls the

density of occupation, is referred to as the “activity.”

The hard-core model also undergoes a phase transition at a critical activity λ = λ0 = bb

(b−1)b+1

(see, e.g., [26, 15]). For λ ≤ λ0 there is a unique Gibbs measure independent of the boundary

condition, while for λ > λ0 there are (at least) two distinct phases, corresponding to the “odd”

and “even” boundary conditions respectively. The even (odd) boundary condition is obtained by

making the leaves of the tree all occupied if the depth is even (odd), and all unoccupied otherwise.

For λ > λ0, the probability of occupation of the root in the infinite-volume Gibbs measure differs

for odd and even boundary conditions.

The (ferromagnetic) Potts model

This model was introduced by Potts [24] as a generalization of the Ising model to more than

two spin values; see [31] for a survey. Here S = {1, 2, . . . , q} and the potentials are U(s1, s2) =
−2βδs1,s2, W (s) = 0, where β is the inverse temperature. Thus the spin at each site can take one

of q possible values, and the aggregated potential of any configuration depends on the number of

adjacent pairs of equal spins. Note that the Ising model (with no external field) is the special case

q = 2. There are no hard constraints, so Ω = SV .

Qualitatively the behavior of this model is similar to that of the Ising model, though less is

known in precise quantitative terms. Again there is a phase transition at a critical β = β0, which

depends on b and q, so that for β > β0 (and indeed for β ≥ β0 when q > 2) there are multiple

phases. This value β0 does not in general have a closed form, but it is known [10] that β0 <
1
2 ln( b+q−1

b−1 ) for all q > 2. (For q = 2, this value is exactly β0 for the Ising model as quoted earlier.)

The antiferromagnetic Potts model (colorings)

In this model S = {1, 2, . . . , q}, and the potentials are U(s1, s2) = 2βδs1,s2, W (s) = 0. This is

analogous to the Ising and Potts models except that the interactions are antiferromagnetic, i.e.,

neighbors with unequal spins are favored. The most interesting case of this model is when β = ∞
(i.e., zero temperature), which introduces hard constraints; in the rest of the paper, we shall always

confine our attention to this case of the model. Thus if we think of the q spin values as colors, Ω
is the set of proper colorings of G, i.e., assignments of colors to vertices so that no two adjacent

vertices receive the same color. The Gibbs distribution is uniform over proper colorings. In this

model it is q that provides the parameterization. This model has been widely studied not only in

statistical physics, but also in computer science because of its connection to graph coloring. See,

e.g., [4] for an informative account.

2For notational convenience in the sequel, we will write (+) and (−) in place of +1 and −1 respectively.
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For colorings on the b-ary tree it is well known that, when q ≤ b + 1, there are multiple Gibbs

measures; this follows immediately from the existence of “frozen configurations,” i.e., colorings in

which the color of every internal vertex is forced by the colors of the leaves (see, e.g., [4]). Recently

it has been proved that, as soon as q ≥ b + 2, the Gibbs measure is unique [14].

Remark: In this paper our discussion of the antiferromagnetic Potts model is always of the zero temperature
case, and for this model we omit the temperature parameter from the rest of the discussion.

1.2 Glauber dynamics

Whereas classical statistical physics focused on static questions about the infinite volume Gibbs

measure (such as the existence of a phase transition), the emphasis in recent years has shifted

towards the study of the Glauber dynamics, a local Markov chain on the set of spin configurations Ω
of a finite graph G. For definiteness, we describe the “heat-bath” version of Glauber dynamics: at

each step, pick a site x u.a.r., and replace the spin at x by a random spin drawn from the conditional

distribution given the spins of its neighbors. It is easy to check that this dynamics converges to µ
as its stationary distribution, providing both an algorithm for sampling from the Gibbs distribution

and a plausible model for the actual evolution of the physical system. The key question in the study

of the dynamics is to determine the mixing time, i.e., the number of steps until the distribution is

close to µ, starting from an arbitrary configuration.

Recent developments in statistical physics have revealed a remarkable connection between the

mixing time and phase transitions in the special case of the Ising model: for the Ising model on an n-

vertex square in Z
2 (which also has a phase transition at a critical β0), when β < β0 the mixing time

with arbitrary boundary conditions is O(n log n) (which is optimal), but as soon as β > β0 there

are boundary conditions for which the mixing time jumps to exp(Ω(
√

n )) [19]. This conforms with

the intuition that the existence of multiple phases creates a “bottleneck” which dramatically slows

down mixing. For the Ising model on trees the situation is even more interesting (see [2, 20]): on

an n-vertex b-ary tree, the mixing time remains O(n log n) for all boundaries,3 not only for β ≤ β0

but in fact for all β < β1, where β1 = 1
2 ln

(√
b+1√
b−1

)
> β0. As soon as β > β1, the mixing time for

certain boundaries becomes n1+Ω(1), and the exponent is unbounded as β → ∞. Thus there is

again a sharp transition in mixing behavior, but it occurs inside the multiple-phase region.4

Finally, in the low temperature region β ≥ β1, the mixing time is heavily influenced by the

boundary condition: recently, we proved that with the (+) (or, symmetrically, (−)) boundary

condition, the mixing time remains O(n log n) throughout this region (and hence for all values

of β) [20]. This formalizes the intuition that the boundary condition breaks the symmetry between

the two phases at low temperatures, thus eliminating the bottleneck and enabling rapid mixing.

The above discussion of the Ising model highlights two central issues in the study of the Glauber

dynamics for general models. Firstly, for which range of parameter values is the mixing time

“optimal” (i.e., O(n log n)) for arbitrary boundary conditions? In particular, does this range extend

throughout the region of uniqueness of the Gibbs measure, and even beyond (as it does for the

Ising model)?5 And secondly, for parameter values outside this range, are there natural boundary

conditions for which the mixing time is still optimal?

3Throughout, a mixing time of O(n log n) hides constants that depend only on the potentials and on the degree b.

4This second critical value β1 has other interpretations in terms of extremality of the Gibbs measure and the threshold

for noisy data transmission on the tree [8].

5Far into the uniqueness region — e.g., for the Ising model at very high temperatures — it is easy to see using the

Dobrushin Uniqueness Condition that the mixing time is O(n log n) (see, e.g., [29]).
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In this paper we present a unified framework for answering such questions for general spin

systems on trees. The framework is adapted and extended from our earlier paper [20] on the Ising

model, where we bound the log-Sobolev constant (and hence the mixing time) in terms of two

simple quantities derived from the Gibbs measure, leading to a clean criterion for O(n log n) mixing

time.6 These two quantities, which we call κ and γ, measure the rate of “disagreement percolation”

down and up the tree respectively. Using this framework, we are able to substantially extend the

range of parameter values for which O(n log n) mixing time is known for the models described

above, and to explicitly relate this to properties of the Gibbs measure. In the case of specific

boundaries, these are apparently the first results of this kind for any of these models. Beyond

providing new results for particular models, our goal is also to demonstrate the wide applicability

of our framework.

1.3 Our results

In this subsection we state our results and explain how they relate to previous work.

The Ising model

Our results for this model were outlined above, and formally read as follows:

Theorem 1.1 For the Ising model on the n-vertex b-ary tree, the mixing time of the Glauber dynamics

is O(n log n) in both of the following situations:

(i) the boundary condition is arbitrary, and either β < β1 or |h| > hc(β).

(ii) the boundary condition is all-(+) (or all-(−)), and (β, h) are arbitrary.

This theorem was proved in our recent paper [20]. However, as a convenient starting point for our

other results, we recapitulate the relevant calculations in Section 4 of the present paper.

The hard-core model (independent sets)

The Glauber dynamics for the hard-core model on trees is known to have mixing time polynomial

in n at all activities λ > 0 with arbitrary boundaries [13]. Moreover, a rather general result of Luby

and Vigoda [16, 28] ensures a mixing time of O(n log n) when λ < 2
b−1 , with arbitrary boundaries.

This latter result actually holds for any graph G of maximum degree b + 1.

In this paper, we prove results for the hard-core model that mirror those stated above for the

Ising model. First, we show that the mixing time is O(n log n) for all activities λ ≤ λ0 (and indeed

beyond), with arbitrary boundary conditions. Second, for the even (or odd) boundary condition,

we get the same result for all activities λ:

Theorem 1.2 For the hard-core model on the n-vertex b-ary tree, the mixing time of the Glauber

dynamics is O(n log n) in both of the following situations:

(i) the boundary condition is arbitrary, and λ < max

{(
b+1
b−1

)2
− 1 , 1√

b−1

}
;

(ii) the boundary condition is even (or odd), and λ > 0 is arbitrary.

6A recent paper of Jerrum et al. [13] provides alternative tools based on decomposition ideas for bounding the log-

Sobolev constant; those tools work in much more general settings, but give weaker bounds than ours for the scenarios

discussed in this paper. In particular, it seems unlikely that those methods are sensitive enough to isolate the regime

where the mixing time is O(n log n).
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Part (ii) of this theorem is analogous to our earlier result that the mixing time for the Ising

model with (+)-boundary is O(n log n) at all temperatures. This is in line with the intuition that

the even boundary eliminates the only bottleneck in the dynamics. Part (i) identifies a region in

which the mixing time is insensitive to the boundary condition. We would expect this to hold

throughout the low-activity region λ ≤ λ0, and indeed, by analogy with the Ising model, also in

some intermediate region beyond this. Note that the quantity ( b+1
b−1)2 − 1 exceeds λ0 for all b ≥ 2,

so we do indeed get O(n log n) mixing time throughout the low-activity region and beyond.7 To

the best of our knowledge this is the first such result. (Note that the result of [16, 28] mentioned

earlier establishes O(n log n) mixing time only for λ < 2
b−1 , which is less than λ0 for all b and so

does not even cover the whole uniqueness region.) Moreover, for b ≥ 12 the quantity 1√
b−1

exceeds

( b+1
b−1 )2 − 1, so the former determines the range of λ in part (i) for large b; and since this quantity

grows as Θ( 1√
b
) compared to the Θ(1

b ) growth of λ0, our region extends significantly beyond λ0 for

large b. We also mention that our analysis in this region has consequences for the infinite volume

Gibbs measure itself, implying that, in the range of λ specified in part (i), any Gibbs measure

that is the limit of finite Gibbs distributions for some fixed boundary configuration is extremal,

again a new result. (The extremality result follows from the fact that our criterion for O(n log n)
mixing time based on κ and γ also implies exponential decay of point-to-set correlations in the

Gibbs distribution. See our earlier paper [20] for details.) For results on extremality with specific

boundary conditions, see [5, 18] and Section 9 of the present paper.

General two-spin systems

Since our results for the Ising and hard-core models have a lot in common, it is natural to ask

whether these results are instances of a more general phenomenon for systems on trees. Indeed

they are: the fact that the mixing time is O(n log n) both uniformly in the boundary condition

throughout the uniqueness regime, and for a constant boundary condition (e.g., all-(+) or all even)

for all values of the parameters of the model, holds for any spin system whose spin space S consists

of two spin values.

Theorem 1.3 For any two-spin system (given by potentials U and W ) the following holds:

(i) if the system admits a unique Gibbs measure then the mixing time of the Glauber dynamics is

O(n log n), uniformly in the boundary condition;

(ii) for the two constant boundary conditions, the mixing time is O(n log n).

The (ferromagnetic) Potts model

Little is known about the Glauber dynamics for the Potts model on trees, beyond the facts that

the mixing time is O(n log n) for arbitrary boundaries at very high temperatures (by the Dobrushin

Uniqueness Condition), and is Ω(n1+ǫ) for some boundaries at very low temperatures (combining

results in [2, 23]). In this paper, we prove:

Theorem 1.4 The mixing time of the Glauber dynamics for the Potts model on an n-vertex b-ary tree

is O(n log n) in all of the following situations:

(i) the boundary condition is arbitrary and β < max
{

β0,
1
2 ln(

√
b+1√
b−1

)
}

;

(ii) the boundary condition is constant (e.g., all sites on the boundary have spin 1) and β is arbitrary;

7For example, for b = 2 the result holds for all λ < 8, while λ0 = 4; and for b = 3 it holds for λ < 3, while λ0 ≈ 1.69.
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(iii) the boundary condition is free (i.e., the boundary spins are unconstrained) and β < β1, where β1

is the solution to the equation e2β1−1
e2β1+q−1

· e2β1−1
e2β1+1

= 1
b .

Part (i) of this theorem shows that we get O(n log n) mixing time for arbitrary boundaries

throughout the uniqueness region; also, since 1
2 ln(

√
b+1√
b−1

) ≥ 1
2 ln( b+q−1

b−1 ) > β0 when q ≤ 2(
√

b + 1),

this result extends into the multiple phase region for many combinations of b and q. Part (ii) of

the theorem is an analog of our earlier result that the mixing time of the Ising model with (+)-
boundaries is O(n log n) at all temperatures. Part (iii) is of interest for two reasons. First, since

β1 > β0 always, it exhibits a natural boundary condition under which the mixing time is O(n log n)
beyond the uniqueness region (but not for arbitrary β) for all combinations of b and q. Second,

because of an intimate connection between the free boundary case and so-called “reconstruction

problems” on trees (see below), we obtain an alternative proof of the best known value of the noise

parameter under which reconstruction is impossible [23]. As we observe later, a slight strengthen-

ing of part (iii) marginally improves on this threshold.

The antiferromagnetic Potts model (colorings)

The sharpest result known for the Glauber dynamics on colorings is due to Vigoda [27], who shows

that for arbitrary boundary conditions the mixing time is O(n log n) provided q > 11
6 (b + 1). This

result actually holds not only for trees but for any n-vertex graph G of maximum degree b + 1.

For graphs of large maximum degree and girth at least 6, this range was recently improved [7] to

q > max {1.489(b + 1), q0}, where q0 is an absolute constant.8 In this paper, we extend this rapid

mixing result throughout the uniqueness region, except for the “critical” value q = b + 2.

Theorem 1.5 The mixing time of the Glauber dynamics for colorings on the n-vertex b-ary tree is

O(n log n) for arbitrary boundary conditions and q ≥ b + 3.

Note that this result is optimal: when q = b + 2, it is not too hard to construct boundary conditions

under which the Glauber dynamics is not connected. (See Section 7 for a discussion.)

Reconstruction problems on trees

Our final sequence of results is concerned not with the dynamics but with a quite different topic

known as “reconstruction problems.” Here the tree is viewed as a noisy communication network

in which a value is transmitted from the root to all other nodes along the edges, with a certain

probability of error in the value transmitted on each edge. These error probabilities (or “channel

parameters”) are the same for all edges, and errors on different edges are independent. The ques-

tion is: for what values of the error probabilities can the value sent by the root be reconstructed

from the values at a level far below? Reconstruction problems on trees have been widely studied

in both genetics and communication theory; see, e.g., [22] for a survey.

The connection with our main results is the following. Firstly, via a standard transformation

it is straightforward to relate the reconstruction problem to an associated spin system, where the

potentials are determined by the error probabilities on the edges. Reconstruction is then possible

only if there is significant correlation between the value at the root and the values at the leaves

in the Gibbs measure for this spin system (with free boundary). (More technically, impossibility of

reconstruction corresponds precisely to the free Gibbs measure being extremal.) Our criterion for

O(n log n) mixing time of the Glauber dynamics, based on the quantities κ and γ mentioned earlier,

in fact also implies a decay of correlations between the values at the root and leaves of a tree as

8A recent sequence of papers [6, 21, 11] have reduced the required number of colors further for general graphs,

under the assumption that the maximum degree is Ω(log n). The current state of the art requires q ≥ (1 + ǫ)(b + 1), for

arbitrarily small ǫ > 0 [12], but these results do not apply in our setting where the degree b + 1 is fixed.
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the depth of the tree tends to infinity. Thus, we can use exactly the same technology in order to

obtain ranges of values of the error parameters for which reconstruction is impossible. We do this

in Section 9 for several popular error models, including general binary channels and symmetric

multi-channels, and thus obtain simpler proofs of known thresholds for reconstruction. Moreover,

for the symmetric multi-channel (for which the associated spin system is the Potts model), we are

able to obtain a slight improvement over known bounds. For further background on reconstruction

problems and precise statements of our results, the reader is referred to Section 9.

The remainder of the paper is organized as follows. After some basic definitions in Section 2, in

Section 3 we extend the analytic framework from our previous paper to general spin systems on

trees, defining the quantities κ and γ and relating them to the mixing time. Then in Sections 5,

6, 7 and 8 we specialize the analysis to the hard-core, general two-spin, colorings and Potts mod-

els respectively. Finally, we discuss the application of our results to reconstruction problems in

Section 9.

2 Preliminaries

For b ≥ 2, let T
b denote the infinite rooted b-ary tree (in which every vertex has b children). We

will be concerned with complete finite subtrees T that are initial portions of T
b, i.e., share the same

root; if T has depth m then it has n = (bm+1−1)/(b−1) vertices, and its boundary ∂T consists of the

children (in T
b) of its leaves, i.e., |∂T | = bm+1. We identify subgraphs of T with their vertex sets,

and write E(A) for the edges within a subset A, and ∂A for the boundary of A (i.e., the neighbors

of A in (T ∪ ∂T ) \ A).

Consider a spin system on T specified by spin values S, pair potential U and singleton poten-

tial W as in the Introduction. Let τ ∈ ST
b

be a spin configuration on the infinite tree T
b. We denote

by Ωτ
T the set of configurations σ ∈ ST∪∂T that agree with τ on ∂T ; i.e., τ specifies a boundary

condition on T . The spin at x is denoted σx. For any η ∈ Ωτ
T and any subset A ⊆ T , the Gibbs

distribution on A conditional on the configuration outside A being η is denoted µη
A and is defined

as follows: if σ ∈ Ω agrees with η outside A then

µη
A(σ) ∝ exp

[
−

( ∑

xy∈E(A∪∂A)

U(σx, σy) +
∑

x∈A

W (σx)
)]

; (1)

otherwise, µη
A(σ) = 0. In particular, when A = T , µη

T = µτ
T is simply the Gibbs distribution on

the whole of T with boundary condition τ . We will assume that µη
A is well defined (i.e., that the

expression in (1) is positive for at least one σ) for every A, τ and η (even when µτ
T (η) = 0); we

call the spin system permissive in this case. (Note that this is an issue only for systems with hard

constraints.) All the examples in this paper are clearly permissive. We usually abbreviate Ωτ
T and

µτ
T to Ω and µ respectively. When there are hard constraints (i.e., U(s1, s2) = ∞ for some s1, s2)

we remove invalid configurations (i.e., those for which µ(σ) = 0) from Ω.

The (heat-bath) Glauber dynamics is the following Markov chain on Ω = Ωτ
T . In configura-

tion η ∈ Ω, transitions are made as follows:

(i) pick a vertex x ∈ T u.a.r., and a spin value s chosen from the distribution of the spin at x
conditional on the spins of its neighbors (i.e., s has the distribution of the spin at x in µη

{x});

(ii) go to configuration ηx,s obtained from η by setting the spin at x to s.
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We always assume that the dynamics is connected on any finite region with any boundary condition;

i.e., for any pair of configurations with non-zero probabilities in the Gibbs distribution, there is a

finite sequence of transitions (with non-zero probabilities) from one configuration to the other.

(Notice again that this is an issue only for systems with hard constraints. Also, among the specific

systems we consider, the only one for which connectedness may not hold is the colorings model for

certain values of b and q.)

Assuming connectedness, it is a well-known fact (and easily checked) that the Glauber dynamics

is ergodic and reversible w.r.t. the Gibbs distribution µ = µτ
T , and so converges to the stationary

distribution µ. We measure the rate of convergence by the mixing time:

tmix = min{t : ‖P t(σ, · ) − µ‖ ≤ 1
2e for all σ ∈ Ω}, (2)

where P t(σ, · ) denotes the distribution of the dynamics after t steps starting from configuration σ,

and ‖ · ‖ is variation distance. (The constant 1
2e in this definition is for algebraic convenience only.)

When we say that the mixing time of the Glauber dynamics is O(n log n) for some boundary

condition τ , we mean that for all finite T , the mixing time for µτ
T is ≤ cn log n for a constant c that

depends only on b and the potentials.

3 A criterion for O(n log n) mixing time

In [20] we developed a criterion for O(n log n) mixing time of the Glauber dynamics on trees, and

used it to analyze the Ising model both for arbitrary boundary conditions and in the important

special case of (+)-boundaries. This criterion generalizes immediately to arbitrary spin systems, as

we describe in this section along with some useful extensions.

The key ingredients are two quantities, which we call κ and γ, that bound the rate of percolation

of disagreements down and up the tree respectively. Both are properties of the collection of Gibbs

distributions {µτ
T}, where the boundary condition τ is fixed and T ranges over all finite complete

subtrees of T
b. To define κ and γ we need a little notation. For a vertex x ∈ T , write Tx for the

(maximal) subtree rooted at x. When x is not the root of T , let µs
Tx

denote the Gibbs distribution

in which the parent of x has its spin fixed to s and the configuration on the bottom boundary

of Tx is specified by τ (the global boundary condition on T ).9 For two distributions µ1, µ2 on Ω,

‖µ1 − µ2‖x denotes the variation distance between the projections of µ1 and µ2 onto the spin at x,

i.e., ‖µ1 − µ2‖x = 1
2

∑
s∈S |µ1(σx = s)− µ2(σx = s)|. Recall that ηx,s is the configuration η with the

spin at x set to s.

Definition 3.1 For a collection of Gibbs distributions {µτ
T } as above, define κ ≡ κ({µτ

T }) and γ ≡
γ({µτ

T }) by

(i) κ = supT maxz,s,s′ ‖µs
Tz

− µs′
Tz
‖z;

(ii) γ = supT max ‖µηy,s

A − µηy,s′

A ‖z, where the maximum is taken over all subsets A ⊂ T , all config-

urations η, all sites y ∈ ∂A, all neighbors z ∈ A of y, and all spins s, s′ ∈ S.

Remark: Note that κ is the same as γ, except that the maximization is restricted to A = Tz and the bound-

ary vertex y being the parent of z; hence always κ ≤ γ. Since κ involves Gibbs distributions only on maximal
subtrees Tz, it may depend on the boundary condition τ at the bottom of the tree. By contrast, γ bounds

9We do not specify the configuration in the rest of T \ Tx as it has no influence on the distribution inside Tx once the

spin at the parent of x is fixed.
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the worst-case probability of disagreement for an arbitrary subset A and arbitrary boundary configuration
around A, and hence depends only on the potentials of the system and not on τ . It is the dependence of κ
on τ that opens up the possibility of an analysis that is specific to the boundary condition.

The intuition for these definitions comes from the following claim, which relates κ and γ to the

rate of disagreement percolation in the tree. For any T and site x ∈ T , write T̃x for Tx \ {x}, the

subtree Tx excluding its root, and µs
fTx

for the Gibbs distribution when the spin at x is fixed to s.

Also, for ℓ ≤ height(x) + 1 write Bx,ℓ for the subtree (or “block”) of height ℓ − 1 rooted at x (i.e.,

Bx,ℓ has ℓ levels). For two configurations σ, σ′ ∈ Ω, let |σ−σ′|x,ℓ denote the number of sites ℓ levels

below x (i.e., on the bottom boundary of Bx,ℓ) at which σ and σ′ differ. Note that |σ − σ′| ≤ bℓ.

Claim 3.2 For every x ∈ T and all ℓ ≤ height(x) + 1 the following hold:

(i) For all s, s′, there is a coupling ν = νs,s′ of µs
fTx

and µs′

fTx
for which Eν |σ − σ′|x,ℓ ≤ (κb)ℓ.

(ii) For any η, η′ ∈ Ω that have the same spin value at the parent of x, ‖µη
Bx,ℓ

−µη′

Bx,ℓ
‖x ≤ γℓ·|η−η′|x,ℓ.

The proof of this claim follows from a standard recursive coupling along paths in the tree: see [20,

Claim 4.4]. Part (i) shows that κ bounds the probability of a disagreement percolating down the

tree: i.e., when we fix a disagreement at x and recursively couple the distributions on the children

of x, the expected proportion of disagreements after ℓ levels is at most κℓ. Similarly, from part (ii)

we see that γ bounds the probability of a disagreement percolating up the tree: i.e., when we fix a

single disagreement at level ℓ below x, the probability of this disagreement reaching x is at most γℓ.

We now state a theorem that will be our main analytical tool. The theorem gives a sufficient

condition for O(n log n) mixing time in terms of the quantities κ and γ. (Recall that we always

assume that the Glauber dynamics is connected for all finite regions and all boundary conditions.)

Theorem 3.3 Consider an arbitrary (permissive) spin system and a boundary condition τ (a configu-

ration on T
b). If κ ≡ κ({µτ

T }) and γ ≡ γ({µτ
T }) satisfy max{γκb, γ} < 1 then the mixing time of the

associated Glauber dynamics is O(n log n).

Proof: The proof follows by combining Theorems 3.4 and 5.1 of [20]10, which together imply that,

under the above conditions on κ and γ, the logarithmic Sobolev constant of the dynamics is Ω( 1
n).

By standard facts relating the log-Sobolev constant to the mixing time, this implies that the mixing

time is O(n log n).

Theorem 3.3 tells us that, to prove O(n log n) mixing time, it is enough to estimate the quanti-

ties κ and γ for the spin system and boundary condition in question. As we shall see, this can be

done using calculations specific to the situation at hand. In [20] we carried out these calculations

for the Ising model with various boundary conditions; our goal in this paper is to perform analogous

calculations for some other important models, thus demonstrating the utility of the approach.

For some of these other models, we will require two minor but useful generalizations of the

above framework, which we now describe. Both generalizations stem from the observation that

the role of the definitions of κ and γ is to obtain the bounds on disagreement percolation stated in

Claim 3.2. In fact, in Theorem 3.3 we can replace κ and γ by any two values κ′ and γ′ for which

the upper bounds in parts (i) and (ii) of Claim 3.2 are O((κ′b)ℓ) and O(γ′ℓ) respectively (where the

10These theorems are stated for the special case of the Ising model. However, it is easily seen that their proofs make

no use of the specific form of the Ising potentials, and thus apply to arbitrary permissive spin systems on trees. See also

the PhD thesis of the third author [30], where this framework is spelled out for general permissive spin systems.
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O( · ) hides constants independent of ℓ). The arguments leading to Theorem 3.3 are easily seen to

hold in this slightly looser setting.

Our first generalization (which will be particularly useful for “non-attractive” systems, including

systems with hard constraints) is to consider two levels of the tree at a time, rather than a single

level as in Definition 3.1. Accordingly, define

κ2 = sup
T

max
z,w≺z,

s1,s′1,s2,s′2

√
‖µs1

Tz
− µ

s′1
Tz
‖z · ‖µs2

Tw
− µ

s′2
Tw

‖w , (3)

where w ≺ z denotes “w is a child of z.” In fact, we may restrict the maximization to sites z of even

(or odd) height. Similarly, define

γ2 = sup
T

max

√
‖µηy,s1

A − µηy,s′1

A ‖z · ‖µηz,s2

A\{z} − µηz,s′2

A\{z}‖w , (4)

where the maximum is over all subsets A ⊂ T , all configurations η, all neighbors z ∈ A of y,

all neighbors w ∈ A of z, and all spins s1, s
′
1, s2, s

′
2 ∈ S. Note that clearly κ2 ≤ κ and γ2 ≤ γ.

Now it is easy to see that the upper bound in Claim 3.2(i) for the probability of disagreement

percolating down the tree can be replaced by (κ2)
2(ℓ/2−1)bℓ = O((κ2b)

ℓ). Similarly, we can replace

γℓ in the upper bound in Claim 3.2(ii) by O((γ2)
ℓ). We therefore get the following generalization

of Theorem 3.3:

Theorem 3.3′ In the setting of Theorem 3.3, if κ2 and γ2 satisfy max{γ2κ2b, γ2} < 1 then the mixing

time of the associated Glauber dynamics is O(n log n).

Our second generalization exploits the fact that, when deriving the bound on upward percola-

tion in part (ii) of Claim 3.2, it is enough to control the probability of a disagreement percolating

upwards one level from y to z only when z is sufficiently far from the boundary and the root of Bx,ℓ.

Let γ̂ be defined in the same way as γ, but with the maximization restricted to sets A that include

the full subtree of depth d rooted at z under the orientation in which y is the parent of z; here d
is an implicit parameter whose value may change from model to model, but will in each case be a

constant independent of the size of T . Then the probability of disagreement percolating one level

upwards to z, where z is at distance at least d from the boundary and root of Bx,ℓ, is bounded

by γ̂. Thus it is easy to modify the proof of Claim 3.2 so that the factor γℓ in part (ii) is replaced

by γ̂ℓ−2d = O(γ̂ℓ). (We refer to [30] for a more detailed explanation of γ̂ and the bound it gives on

the probability of a disagreement percolating up the tree.) Similarly, we define κ̂ as before but with

the maximization restricted to z that are at distance at least d from the boundary of T . Whenever

we use γ̂, we will also use κ̂ with the same value of d so that we still have κ̂ ≤ γ̂. This leads to our

second generalization of Theorem 3.3:

Theorem 3.3′′ In the setting of Theorem 3.3, if κ̂ and γ̂ satisfy max{γ̂ κ̂b, γ̂} < 1 then the mixing

time of the associated Glauber dynamics is O(n log n).

4 The Ising model

In this section we will prove that the mixing time of the Glauber dynamics for the Ising model is

O(n log n) in all the situations covered by Theorem 1.1. Although we already proved this in [20],

we repeat the proof here, in slightly modified form, in order to illustrate ideas that will be used in

the proofs for other models in subsequent sections.
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In light of Theorem 3.3, in order to show O(n log n) mixing time it is enough to bound the

quantities κ and γ such that max {γκb, γ} < 1, where κ and γ can also be replaced by their variants

as explained in Section 3. Thus, Theorem 1.1 will follow from the bounds on κ and γ given in

Theorem 4.1 below. Recall that γ ≡ γ({µτ
T}) depends only on the potentials of the system, while

κ ≡ κ({µτ
T }) may also depend on the boundary condition τ .

Theorem 4.1 Consider the Ising model at inverse temperature β and external field h. Then:

(i) for all (β, h), γ ≤ eβ−e−β

eβ+e−β ;

(ii) if (β, h) are such that the Gibbs measure is unique (i.e., β ≤ β0 or |h| > hc(β)) then for

every ε > 0 there exists a large enough d such that γ̂ ≤ 1
b + ε, where d is the implicit constant

in γ̂;

(iii) for τ the all-(+) boundary configuration, if (β, h) are such that the Gibbs measure is not unique

(i.e., β > β0 and |h| ≤ hc(β)) then κ ≡ κ({µτ
T }) ≤ 1

b .

Before proving Theorem 4.1, we first explain how to deduce Theorem 1.1 from it. We start

with part (i) of Theorem 1.1, which considers arbitrary boundary conditions and high or interme-

diate temperature or large external field. Recall that κ ≤ γ for all boundary conditions. Thus,

max {γκb, 1} < 1 for all boundary conditions provided that γ < 1√
b

. However, using part (i) of

Theorem 4.1, we see that this is the case for all β < 1
2

ln(
√

b+1)

ln(
√

b−1)
, i.e., for all β < β1, completing the

proof for high and intermediate temperatures. The result for super-critical external field |h| > hc(β)
follows immediately from part (ii) of Theorem 4.1 by applying Theorem 3.3′′, once we recall that

κ̂ ≤ γ̂ for all boundary conditions. We go on to part (ii) of Theorem 1.1, where the boundary condi-

tion is all-(+). Notice that the regime in which the Gibbs measure is unique is covered (for arbitrary

boundary conditions) by part (i) of Theorem 1.1. For the regime in which the Gibbs measure is not

unique, part (ii) of Theorem 1.1 follows immediately from part (iii) of Theorem 4.1, together with

the fact that γ < 1 for all β < ∞, which is apparent from part (i) of the same theorem.

Proof of Theorem 4.1: To bound κ and γ, we need to bound a quantity of the form ‖µηy,+

A −µηy,−

A ‖z ,

where y ∈ ∂A and z ∈ A is a neighbor of y. The key observation is that this quantity can be

expressed very cleanly in terms of the “magnetization” at z, i.e., the ratio of probabilities of a (−)-
spin and a (+)-spin at z. It will actually be convenient to work with the magnetization without the

influence of the neighbor y: to this end, we let µηy,∗

A denote the Gibbs distribution with boundary

condition η, except that the spin at y is free (or equivalently, the edge connecting z to y is erased).

We then have:

Proposition 4.2 For any subset A ⊆ T , any boundary configuration η, any site y ∈ ∂A and any

neighbor z ∈ A of y, we have

‖µηy,+

A − µηy,−

A ‖z = Kβ(R),

where R =
µηy,∗

A (σz=−)

µηy,∗

A (σz=+)
is the magnetization at z and the function Kβ is defined by

Kβ(a) =
1

e−2βa + 1
− 1

e2βa + 1
.
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Proof: First, w.l.o.g. we may assume that the edge between y and z is the only one connecting y
to A; this is because a tree has no cycles, so once the spin at y is fixed A decomposes into disjoint

components that are independent. We abbreviate µηy,+

A , µηy,−

A and µηy,∗

A to µ+
A, µ−

A and µ∗
A respec-

tively. Thus ‖µηy,+

A − µηy,−

A ‖z = |µ+
A(σz = +) − µ−

A(σz = +)|, and R =
µ∗

A(σz=−)
µ∗

A(σz=+) . We write R+

for
µ+

A(σz=−)

µ+
A(σz=+)

and R− for
µ−

A(σz=−)

µ−
A(σz=+)

. Since the only influence of y on A is through z, we have

R+ = e−2βR and R− = e2βR. The proposition now follows once we notice that, by definition

of R+ and R−, µ+
A(σz = +) = 1

R++1
and µ−

A(σz = +) = 1
R−+1

.

Now it is easy to check that Kβ(a) is an increasing function in the interval [0, 1], decreasing in

the interval [1,∞], and is maximized at a = 1. Therefore, we can always bound κ and γ from above

by Kβ(1) = eβ−e−β

eβ+e−β . Indeed, for γ we must make do with this crude bound because we cannot rule

out the possibility that R = 1 when the subset A and the boundary configuration η are arbitrary,

and this completes the proof of part (i) of Theorem 4.1. However, for γ̂ and κ we only have to

consider restricted scenarios (either because A includes a deep enough full subtree in the case of

γ̂, or because the boundary condition is specific in the case of κ), and as we shall see below, we get

better bounds for these quantities by calculating the magnetization R in the relevant scenarios.

Before giving the details of this calculation, we make the following two remarks regarding γ̂.

First recall that, in order to bound γ̂, we need to consider an arbitrary subset A that includes a

deep enough subtree B rooted at z and an arbitrary boundary condition outside A. Now, notice

that the Gibbs distribution on A is a convex combination of µσ
B as σ varies. Thus, if we establish

that the magnetization R at z for the subtree B with an arbitrary boundary condition is at least a1

and at most a2, then this immediately implies the same for the subset A. The second point we

wish to make is that the Ising model is monotone, i.e., by changing spins on the boundary from (+)

to (−) the magnetization R = Pr(σz=−)
Pr(σz=+) can only increase. Therefore, in order to establish upper

and lower bounds on the magnetization for arbitrary boundary conditions, it is enough to bound

the magnetization for the all-(+) and all-(−) configurations respectively. We thus concentrate

on calculating the magnetization at the root of full subtrees when the boundary condition at the

bottom of the subtree is either all-(+) or all-(−). Notice also that a full subtree with the all-(+)
boundary is exactly what we need to consider in order to bound κ in part (iii) of Theorem 4.1.

4.1 A recursive calculation of the magnetization at the root of full subtrees

Fix a boundary configuration τ , and for a site z with parent y let Rz,ℓ = p(σz=−)
p(σz=+) , where p(·) =

µτy,∗

Bz,ℓ
(·). (If z is the root of T

b then p(·) = µτ
Bz,ℓ

(·).)
We now describe a recursive calculation of the magnetization Rz,ℓ, the details of which (up to

change of variables) can be found in [1] or [3]. Recall that x ≺ z denotes that x is a child of z. A

simple direct calculation gives that Rz,ℓ = e−2βh
∏

x≺z F (Rx,ℓ−1), where F (a) ≡ Fβ(a) = a+e−2β

e−2βa+1
.

In particular, if τ is the all-(+) configuration (i.e., Rx,0 = 0 for all x) then Rz,1 = e−2βh[F (0)]b. We

let F (∞) ≡ e2β and notice that indeed, if τ is the all-(−) configuration (i.e., Rx,0 = ∞ for all x),

then Rz,1 = e−2βh[F (∞)]b. From here onwards we limit our attention to the all-(+) and all-(−)
boundary conditions. We thus define

J(a) ≡ Jβ,h(a) = e−2βh[F (a)]b (5)

and observe that Rz,ℓ equals J (ℓ)(0) and J (ℓ)(∞) for τ all-(+) and all-(−) respectively, where J (ℓ)

stands for the ℓ-fold composition of J .
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Now that we have expressed the magnetization in terms of the function J , our next step is

relating J to the function Kβ in Proposition 4.2, which expresses the total variation distance in

terms of the magnetization. To begin, let us describe some properties of J that we shall use (refer to

Fig. 1). First, J is continuous and increasing on [0,∞), with J(0) = e−2β(h+b) > 0 and supa J(a) =
e−2β(h−b) < ∞. This immediately implies that J has at least one fixed point in [0,∞). In fact,

whether J has one or more fixed points corresponds exactly to whether the Gibbs measure (for

the same values of β and h) is unique or not. This is because the Gibbs measure is unique if and

only if the magnetization at the root of the tree of depth ℓ converges with ℓ to the same value

conditioned on the all-(+) and all-(−) boundary configurations respectively. We denote by a0 the

least fixed point of J . Then, since J(0) > 0, we have J ′(a0) ≤ 1, where J ′(a) ≡ ∂J(a)
∂a is the

derivative of J . In particular, when the Gibbs measure is unique, the derivative at the unique fixed

point a0 is ≤ 1. We also observe that J has a single point of inflection a∗, i.e., the derivative J ′ is

monotonically increasing on [0, a∗) and decreasing on [a∗,∞) for some a∗ ∈ R
+. (This follows from

the fact that the equation J ′′(a) = 0 has a unique solution, as can be verified by straightforward

calculus). Therefore, J can have at most three fixed points, and furthermore, if it has two or three

fixed points, then necessarily a∗ ≥ a0, i.e., J ′(a) ≤ J ′(a0) ≤ 1 for a ∈ [0, a0].

a

a
0

a
0

(iii)

a

J(a)(ii)(i)
J(a)

a

a
0

J(a)

10 00 1 11

Figure 1: Curve of the function J(a), used in the proof of Theorem 4.1, for β > β0 and various

values of the external field h. (i) h < −hc; (ii) h = −hc(β); (iii) hc(β) > h > −hc(β). The point a0

is the smallest fixed point of J .

The relevance of the derivative J ′ and the fixed point a0 to the discussion here is made clear by

the following lemma.

Lemma 4.3 For every a ∈ R
+, Kβ(a) = 1

b · a
J(a) · J ′(a).

Proof: From the definitions of J and F we have:

J ′(a) = e−2βh · b · [F (a)]b−1F ′(a)

= b · J(a) · F ′(a)

F (a)

= b · J(a)

a
· a

[ 1 − e−4β

(a + e−2β)(e−2βa + 1)

]

= b · J(a)

a
· Kβ(a).

We are now ready to complete the proof of the bounds on γ̂ and κ given in parts (ii) and (iii)

of Theorem 4.1.
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4.2 Bounding γ̂ when the Gibbs measure is unique

When the Gibbs measure is unique, the magnetization Rz,ℓ converges with ℓ to the unique fixed

point a0 of J , for which J ′(a0) ≤ 1, and thus Kβ(a0) ≤ 1
b by Lemma 4.3. We now observe

that since a0 is the unique fixed point, for every ε′ > 0 there exists a large enough d such that

Rz,d ≥ a0 − ε′ for the all-(+) boundary condition, and Rz,d ≤ a0 + ε′ for the all-(−) boundary

condition. As explained above, this means that for any subset A that includes the full subtree of

depth d rooted at z, and with arbitrary boundary condition outside A, the relevant magnetization

Rz ∈ [a0 − ε′, a0 + ε′]. (From here onwards we write Rz for the magnetization R at z as defined in

Proposition 4.2, where the subset A, the boundary condition η, and the neighbor y of z are clear

from the context.) Now, since Kβ(a) is continuous in a, we deduce that that Kβ(Rz) ≤ 1
b + ε for

some ε that depends on ε′. In particular, when the Gibbs measure is unique, for every ε > 0 there

exists a large enough d such that γ̂ ≤ 1
b + ε. This concludes the proof of part (ii) of Theorem 4.1.

4.3 Bounding κ for the (+)-boundary condition when the Gibbs measure is not
unique

We now assume that τ (the global boundary configuration) is all-(+) and consider (β, h) such that

the Gibbs measure is not unique, i.e., β > β0 and |h| ≤ hc(β). As we shall see below, the property

of this regime that we use here is that J has at least two fixed points, and therefore J ′(a) ≤ 1 for

a ∈ [0, a0].
To calculate κ, we need to bound the variation distance ‖µ+

Tz
− µ−

Tz
‖z, which by Proposition 4.2

is equal to Kβ(Rz), where Rz =
µ∗

Tz
(σz=−)

µ∗
Tz

(σz=+) and µ∗
Tz

is the Gibbs distribution over the subtree Tz

when it is disconnected from the rest of T and the spins on its bottom boundary agree with τ . Now,

since τ is all-(+), then Rz = J (ℓ)(0), where ℓ is the distance of z from the bottom boundary of T .

We thus have κ = supT maxz∈T Kβ(Rz) = supℓ≥1 Kβ(J (ℓ)(0)).

Since J is monotonically increasing and a0 is the least fixed point of J , then clearly J (ℓ)(0)
converges to a0 from below, i.e., J (ℓ)(0) ≤ a0 for all ℓ. Now by applying Lemma 4.3, since J ′(a) ≤ 1
for a ∈ [0, a0] in the non-uniqueness regime, and since J(a) ≥ a for the same a, Kβ(J (ℓ)(0)) =
1
b ·

J(ℓ)(0)

J(J(ℓ)(0))
· J ′(J (ℓ)(0)) ≤ 1

b for all ℓ. This completes the proof of part (iii) of Theorem 4.1.

Remark: We note that in fact κ ≤ 1
b

for β ≤ β0 (and arbitrary h) as well. This follows from the fact

that γ ≤ eβ
−e−β

eβ+e−β ≤ 1
b

in this regime. We also note that κ̂ ≤ 1
b

+ ε throughout the uniqueness regime, as is

apparent from part (i) of the above theorem. Indeed, the only obstacle to proving κ ≤ 1
b

with the all-(+)

boundary for all (β, h) is that for β < β0 and h < −hc(β), the derivative J ′(J (ℓ)(0)) > 1 for some ℓ (see

Figure 1). Notice, however, that this derivative converges with ℓ to a value not larger than 1. (This was used

for proving γ̂ ≤ 1
b

+ ε in this regime.)

5 The hard-core model (independent sets)

In this section, we will prove that the mixing time of the Glauber dynamics for sampling indepen-

dent sets is O(n log n) in all the scenarios covered by Theorem 1.2. Again, we appeal to our general

framework in Theorem 3.3 and its variants to deduce Theorem 1.2 from:

Theorem 5.1 For the hard-core model with activity parameter λ:

(i) γ ≤ λ
1+λ ;
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(ii) γ2 ≤
√√

1+λ−1√
1+λ+1

;

(iii) for τ the 0-boundary condition (i.e., all sites are unoccupied), if the Gibbs measure is not unique

(i.e., λ > λ0) then κ2 ≡ κ2({µτ
T}) ≤ 1

b .

Recall that κ ≤ γ, so from part (i) of this theorem we conclude that γκb < 1 when ( λ
1+λ )2 < 1

b , i.e.,

when λ < 1√
b−1

. Similarly, since κ2 ≤ γ2, part (ii) implies the same result when
√

1+λ−1√
1+λ+1

< 1
b , i.e.,

when λ < ( b+1
b−1)2 − 1. Part (i) of Theorem 1.2 now follows using Theorem 3.3′′. This also dispenses

with part (ii) of Theorem 1.2 in the uniqueness regime λ ≤ λ0 (recall that ( b+1
b−1)2−1 > λ0 for all b).

Part (ii) in the non-uniqueness regime follows immediately from part (iii) of Theorem 5.1, using

Theorem 3.3′ and the fact that γ2 < 1. (Note that analyzing the 0-boundary for all depths of T
handles both odd and even boundary conditions.)

Proof of Theorem 5.1: The proof uses similar ideas to those used in the proof of Theorem 4.1

for the Ising model. We start with a closer look at the variation distance we need to bound in

order to compute κ and γ, i.e., ‖µηy,1

A − µηy,0

A ‖z, for some η, A, z ∈ A, and neighbor y ∈ ∂A of z.

Now, from the definition of the hard-core model, in the first distribution the site z is unoccupied

with certainty, and hence the variation distance between the two distributions at z is exactly the

probability that z is occupied in the second distribution (where y is unoccupied, or equivalently,

where the edge connecting y and z is removed). Let pz stand for this last probability. Formally,

‖µηy,1

A − µηy,0

A ‖z = µηy,0

A (σz = 1) ≡ pz. (6)

Our main goal in the rest of this proof is to bound the probability of occupation pz, either for all A
and all boundary configurations η (in the case of γ) or for full subtrees A with the global boundary

condition η = τ (in the case of κ).

We start with the easy observation that, for any subset A, any boundary configuration η and any

site z ∈ A, µη
A(σz = 1) ≤ λ

1+λ , simply because the r.h.s. is the probability of z being occupied when

all its neighbors are unoccupied, and if one of its neighbors is occupied than z is unoccupied with

certainty. Using (6), we deduce that γ ≤ λ
1+λ , which immediately gives part (i) of Theorem 5.1.

Part (ii) follows from a similar (though rather more involved) calculation bounding the product

of adjacent occupation probabilities, and part (iii) from a recursive calculation of the occupation

probabilities for the 0-boundary similar to the magnetization arguments for the Ising model given

in the previous section. We deal with each of these in a separate subsection below.

5.1 Bounding γ2

Recall from the definition (4) that

γ2
2 = sup

T
max ‖µηy,s1

A − µηy,s′1

A ‖z · ‖µηz,s2

A\{z} − µηz,s′2

A\{z}‖w = sup
T

max pzpw, (7)

where pz is the occupation probability as defined earlier (for a given subset A and neighbor y of

z ∈ A) and pw is the analogous quantity for the subset A \ {z} and neighbor z of w ∈ A \ {z}. Of

course, we could simply use the above bound on pz and pw separately to deduce that γ2 ≤ λ
1+λ , but

this gives no new information. We can do better by exploiting the fact that z and w cannot both be

occupied to obtain a tighter bound on the product pzpw.
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In what follows we abbreviate µηy,0

A to µ, so that pz = µ(σz = 1) and pw = µ(σw = 1|σz = 0).
Now we have

pz = µ(σz = 1|σw = 0)µ(σw = 0) ≤ λ

1 + λ
α, (8)

where we have written α to denote µ(σw = 0). On the other hand, using Bayes’ rule we have

pw = µ(σw = 1|σz = 0) =
µ(σz = 0|σw = 1)µ(σw = 1)

µ(σz = 0)

=
µ(σw = 1)

1 − pz

≤ 1 − α

1 − λ
1+λα

, (9)

where in the last step we used (8). Substituting (8) and (9) into (7) we obtain

γ2
2 ≤ sup

α

λα(1 − α)

1 + λ(1 − α)
.

Now for each λ the function fλ(α) ≡ λα(1−α)
1+λ(1−α) is a concave function of α, and it is easy to check

that it achieves its maximum at α = αλ = 1+λ−
√

1+λ
λ , where it is equal to

fλ(αλ) =

√
1 + λ − 1√
1 + λ + 1

.

This yields the bound on γ2 claimed in part (ii) of Theorem 5.1.

Remark: For the hard-core model, we have proved rapid mixing of the Glauber dynamics with arbitrary
boundary condition for λ < λ̂, where λ̂ > λ0, the critical value for uniqueness. However, unlike the anal-

ogous result for the Ising model (Theorem 1.1(i)) this value λ̂ is not tight. Indeed, we note that the above

argument can clearly be tightened in several places (at least for some values of b): e.g., the sup over α can
be taken only over α ≥ (1 + λ)−1, which leads to a small improvement in the final bound. It remains an

intriguing open question to establish a sharp threshold for rapid mixing with arbitrary boundary condition
in the hard-core model.

5.2 Bounding κ for the all-0 boundary when the Gibbs measure is not unique

We begin with a recursive calculation of the occupation probabilities pz in the situation where the

set A is the full subtree rooted at z. A similar calculation to the one we describe below can be found

in, e.g., [15]. As in the Ising model, we consider subtrees Bz,d (disconnected from the parent y of z,

or equivalently, with y unoccupied) and with a fixed boundary configuration τ . Let Rz,d = pz

1−pz

stand for the ratio of probabilities that the site z is occupied and unoccupied respectively. A simple

calculation verifies that Rz,d = λ
∏

w≺z

(
1

1+Rw,d−1

)
. For any given value of λ, we thus define the

function

J(a) = λ

(
1

1 + a

)b

(10)

and observe that, when the boundary condition is all-0 (respectively all-1), then Rz,d = J (d)(0)
(respectively J (d)(∞)). Notice, however, that unlike the case of the Ising model, here J is mono-

tonically decreasing. Furthermore, since J(0) = λ > 0, J has a unique fixed point for every λ; we

denote this fixed point by a0 = a0(λ). We also note that the derivatives of J alternate signs (the

16



odd derivatives being negative). Now uniqueness of the Gibbs measure is equivalent to the fixed

point a0 being attractive, i.e., the derivative J ′(a0) ≥ −1; indeed, when λ = λ0 is critical the deriva-

tive at a0 = a0(λ0) is exactly −1. The equivalence between uniqueness of the Gibbs measure and

the attractiveness of a0 is better understood by considering the function J2(a) ≡ J (2)(a) ≡ J(J(a)),
which corresponds to jumping two levels at a time. The main observation is that, since J is mono-

tonically decreasing, J2 must be monotonically increasing, and thus plays a similar role to that of J
in the Ising model.

Let us now further describe some properties of the function J2 (see Fig. 2), which can be verified

using simple calculus:

1. J2 is continuous and increasing on [0,∞), with J2(0) = λ/(1 + λ)b and supa J2(a) = λ.

2. a0 (the unique fixed point of J) is a fixed point of J2.

3. If the Gibbs measure is unique (i.e., λ ≤ λ0) then a0 is the unique fixed point of J2. If there

are multiple Gibbs measures (i.e., λ > λ0) then J2 has three fixed points a1 < a0 < a2, where

J(a1) = a2 and J(a2) = a1.

4. The derivative J ′
2(a) ≡ ∂J2(a)

∂a is continuous. If a0 is the unique fixed point of J2 (the Gibbs

measure is unique) then J ′
2(a0) ≤ 1. If there are three fixed points then J ′

2(a0) > 1, and

J ′
2(a) ≤ 1 for a ∈ [0, a1].

a a01 a2 a

a

J (a)2

Figure 2: Curve of the function J2(a), used in the proof of Theorem 5.1, for λ > λ0. The points

a1, a0, a2 are the fixed points of J2 in increasing order.

It is now easy to see that, since J ′
2(a0) = J ′(a0)

2, then indeed the Gibbs measure is unique if and

only if J ′(a0) ≥ −1.

Before we go on, we wish to further clarify the connection between the uniqueness of the Gibbs

measure and the uniqueness of the fixed point of J2. First, notice that for odd-depth (respectively,

even-depth) trees, the probability of occupation at the root is monotonically decreasing (respec-

tively, increasing) in the boundary configuration. In particular, for both even and odd depths, the

all-0 and all-1 boundaries are the extreme boundary configurations, i.e., for all boundary condi-

tions the probability of occupation at the root is in the range delimited by the probabilities under

the all-0 and all-1 boundary conditions. Thus, when J2 has a unique fixed point, the probability pz

of occupation at the root of even-depth trees converges with the depth of the tree to the same value

for all boundary configurations. This also means that pz converges to the above value in odd-depth

trees (uniformly in the boundary condition), because the limit for even-depth trees with the all-0

boundary is the same as the limit for odd-depth trees with the all-1 boundary, and vice versa.
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With the above recursive calculation of pz at hand, we can now complete our argument for

bounding κ in the case that the boundary condition τ is set to all-0 and λ > λ0, i.e, the Gibbs

measure is not unique. Recall from the definition (3) that

κ2
2 = sup

T
max
w≺z

‖µ1
Tz

− µ0
Tz
‖z · ‖µ1

Tw
− µ0

Tw
‖w = sup

T
max
w≺z

pzpw,

where pz is the occupation probability of z in the full subtree rooted at z with boundary condition τ
at the leaves and the parent of z unoccupied (and pw is defined similarly). Recall also that it is

enough to consider sites z whose height is odd. Now, since τ is the all-0 configuration, then pz

1−pz
≡

Rz = J (ℓ)(0), where ℓ is the distance of z from the bottom boundary of T . Therefore, by letting

K(R) = R
1+R (i.e., K translates the ratio R = p

1−p to p), we see that κ2
2 = supℓ≥1 K[J(J

(ℓ)
2 (0))] ·

K[J
(ℓ)
2 (0)]. We will use the properties of J2 in order to show that the last expression is bounded by

1
b2

. Notice that, since we are in the regime of non-uniqueness of the Gibbs measure, the sequence

J (ℓ)(0) does not converge with ℓ to a0, but oscillates around it, i.e., J (2ℓ)(0) = J
(ℓ)
2 (0) converges

to a1 while J (2ℓ+1)(0) = J(J
(ℓ)
2 ) converges to a2.

A straightforward calculation shows that the derivative J ′(a) = −b · J(a)
1+a . We thus have

J ′
2(a) = J ′(J(a)) · J ′(a)

= b

(
J(J(a))

1 + J(a)

)
· b

(
J(a)

1 + a

)

= b2 · J2(a)

a
· J(a)

1 + J(a)
· a

1 + a

= b2 · J2(a)

a
· K(J(a)) · K(a).

Applying this equality with a = J
(ℓ)
2 (0), and recalling that J

(ℓ)
2 (0) converges to a1 from below and

that J2(a) ≥ a and J ′
2(a) < 1 for all a ∈ [0, a1], we conclude that for all ℓ,

K[J(J
(ℓ)
2 (0))] · K[J

(ℓ)
2 (0)] =

1

b2
· J

(ℓ)
2 (0)

J2(J
(ℓ)
2 (0))

· J ′
2(J

(ℓ)
2 (0))) ≤ 1

b2
,

as required. This completes the proof of part (iii) of Theorem 5.1.

Remark: It is interesting to note that we can use this type of analysis (specifically, the fact that the derivative

J ′(a0) ≥ −1) to show that, throughout the uniqueness regime, γ̂ ≤ 1
b

+ ǫ (as we did in Theorem 4.1(ii) for
the Ising model). This provides an alternative proof of O(n log n) mixing time with arbitrary boundary

condition throughout the uniqueness regime λ ≤ λ0 (though of course this is already covered by part (ii) of

Theorem 5.1, which holds over a wider range of λ).

6 General two-spin systems

It is not too difficult to see that most of our analysis of the hard-core model was based on the same

high-level ideas as the analysis of the Ising model. Indeed, these ideas are part of a general theory

that holds for any spin system for which the spin space S consists of two values. In this section we

develop this general theory in order to show that, for general two-spin systems, the mixing time of

the Glauber dynamics is O(n log n) in the scenarios covered by Theorem 1.3.
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In order to simplify our discussion of general two-spin systems we use the following notation.

First, w.l.o.g. we assume that S = {−,+}. Furthermore, we can assume that the value of the

pair potential U(−,+) < ∞ since otherwise the system is not permissive (specifically, it is a trivial

system with only two legal configurations: all-(+) and all-(−) respectively). Now, since the Gibbs

distribution remains unaffected by adding a uniform constant value to the potential, we can assume

w.l.o.g. that U(−,+) = 0, and hence that the pair potential is specified by the two values U(−,−)
and U(+,+). We let λ− = exp(−U(−,−)) and λ+ = exp(−U(+,+)). In a similar manner, we can

assume w.l.o.g. that the self potential W (+) = 0, and let λ = exp(−W (−)). Notice that the Gibbs

distribution assigns to configuration σ a probability proportional to λ#{−} ·λ#{−,−}
− ·λ#{+,+}

+ , where

# {−} ,# {−,−} and # {+,+} stand for the number of sites whose spin is (−), edges whose spins

are {−,−} and edges whose spins are {+,+} respectively in σ. From here onwards we assume that

a two-spin system is specified by the three parameters (λ, λ−, λ+). For example, the Ising model

with parameters (β, h) is given by λ = e−2βh and λ− = λ+ = e2β . The hard-core model with

activity λ is given by λ, λ− = 0 and λ+ = 1, where we have identified the spins 0 and 1 of the

hard-core model with (+) and (−) respectively. Before stating our results for two-spins systems,

we note that the case λ− = λ+ = 0 corresponds to a trivial non-permissive system that has only

two legal configurations (the “odd” and “even” configurations respectively, in which the spin values

alternate down the levels of the tree). We thus assume w.l.o.g. that in any given system λ+ > 0.

As in the cases of the Ising and hard-core models, Theorem 1.3 follows from bounds on κ and γ:

Theorem 6.1 For any two-spin system (λ, λ−, λ+) on the regular b-ary tree:

(i) if the Gibbs measure is unique then, for every ε > 0, there exists a large enough d such that

γ̂ ≤ 1
b + ε;

(ii) for τ the all-(+) configuration, if the Gibbs measure is not unique then κ2 ≡ κ2({µτ
T}) ≤ 1

b .

We observe that γ < 1 for every two-spin system (because we are assuming λ+ > 0, which implies

that for any boundary condition, the spin at any given site is (+) with positive probability), and

hence Theorem 1.3 follows from Theorem 6.1 by applying either Theorem 3.3′′ in case the Gibbs

measure is unique, or Theorem 3.3′ for the (+)-boundary in case the Gibbs measure is not unique.

Proof of Theorem 6.1: The first step in the proof is relating the total variation distance at z
between two distributions that differ in a single boundary site y to the “magnetization” at z. The

following is a generalization of Proposition 4.2:

Proposition 6.2 For any subset A ⊆ T , any boundary configuration η, any site y ∈ ∂A and any

neighbor z ∈ A of y, we have

‖µηy,+

A − µηy,−

A ‖z = |K(R)|,

where R =
µηy,∗

A (σz=−)

µηy,∗

A (σz=+)
and the function K is defined by

K(a) =
λ+

a + λ+
− 1

aλ− + 1
.

Proof: First, as was already explained in the proof of Proposition 4.2, we may assume w.l.o.g.

that the edge between y and z is the only one connecting y to A. As in the previous proof, we

abbreviate µηy,+

A , µηy,−

A and µηy,∗

A to µ+
A, µ−

A and µ∗
A respectively. Thus ‖µηy,+

A − µηy,−

A ‖z = |µ+
A(σz =

+)−µ−
A(σz = +)|, and R =

µ∗
A(σz=−)

µ∗
A(σz=+) . We write R+ for

µ+
A(σz=−)

µ+
A(σz=+)

and R− for
µ−

A(σz=−)

µ−
A(σz=+)

. Again, since
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the only influence of y on A is through z, we have R+ = R
λ+

and R− = Rλ−. The proposition now

follows once we notice that, by definition of R+ and R−, µ+
A(σz = +) = 1

R++1 and µ−
A(σz = +) =

1
R−+1 .

The next step is generalizing the recursive calculation of the magnetization at the root of full

subtrees. As we did for the Ising model, fix a boundary configuration τ , and for a site z with

parent y let Rz,ℓ = p(σz=−)
p(σz=+) , where p(·) = µτy,∗

Bz,ℓ
(·). (If z is the root of T

b then p(·) = µτ
Bz,ℓ

(·).) A

direct calculation (similar to that for the Ising model) gives that Rz,ℓ = λ
∏

x≺z F (Rx,ℓ−1), where

F (a) = λ−a+1
a+λ+

. In particular, if τ is the all-(+) configuration (i.e., Rx,0 = 0 for all x) then Rz,1 =

λ[F (0)]b. Again, we let F (∞) ≡ λ− and notice that indeed, if τ is the all-(−) configuration (i.e.,

Rx,0 = ∞ for all x), then Rz,1 = λ[F (∞)]b. As before, this motivates us to define

J(a) = λ[F (a)]b, (11)

where we notice that Rz,ℓ equals J (ℓ)(0) and J (ℓ)(∞) for τ all-(+) and all-(−) respectively.

We now observe that the relationship established for the Ising and hard-core models between K
and the derivative of J holds for general two-spin systems. In particular, a straightforward calcula-

tion verifies that K(a) = aF ′(a)/F (a) for all a, and therefore

J ′(a) = bJ(a)
F ′(a)

F (a)
= b · J(a)

a
· K(a). (12)

The proof of Theorem 6.1 will be concluded once we notice that the function J here has the

same properties and relationships with the uniqueness of the Gibbs measure as those mentioned

earlier for the Ising and hard-core models. To this end, we separate the discussion into two classes

of systems, where we think of the Ising and hard-core models as typical representatives of each

class. We say that a system is ferromagnetic (respectively, antiferromagnetic) if λ− · λ+ > 1 (re-

spectively, if λ− · λ+ < 1). Notice that in a ferromagnetic system neighboring spins are positively

correlated, i.e., the spin at site z is more likely to be (+) conditioned on its neighbor being (+) than

conditioned on its neighbor being (−). In an antiferromagnetic system, the opposite effect takes

place. Indeed, if λ− · λ+ = 1 then the spin at z is independent of the spins of its neighbors. Notice

that in the latter case the Gibbs distribution is a product distribution, and trivially κ = γ = 0 for all

boundary conditions.

We now describe the properties of the function J , first for ferromagnetic and then for antiferro-

magnetic systems.

6.1 Ferromagnetic systems

For a ferromagnetic system, the function J has all the properties we described earlier in the Ising

model case. Specifically:

1. J is continuous and increasing on [0,∞), with J(0) = λ(1/λ+)b > 0 and supa J(a) =
λ(λ−)b < ∞.

2. J has at least one fixed point in [0,∞). The fixed point is unique if and only if the system

admits a unique Gibbs measure.

3. J ′(a0) ≤ 1, where a0 denotes the least fixed point of J . In particular, if the Gibbs measure is

unique then the derivative at the unique fixed point is J ′(a0) ≤ 1.
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4. If a0 is not the unique fixed point then J ′(a) ≤ 1 for a ∈ [0, a0]. (This follows from the fact

that J has a single point of inflection a∗, i.e., the derivative J ′ is monotonically increasing

on [0, a∗) and decreasing on [a∗,∞) for some a∗ ∈ R
+, which also means that J has at most

three fixed points.)

We note that the relationship with the uniqueness of the Gibbs measure follows from the fact that

the all-(−) and all-(+) configurations are the minimal and maximal boundary conditions respec-

tively, as in the case of the Ising model, i.e., for any boundary condition the probability that the

spin at z is (+) is bounded below and above by the same probability under the all-(−) and all-(+)
boundary conditions respectively.

Now, part (i) of Theorem 6.1 follows by the same argument used for the Ising model in the

uniqueness regime (see the proof of Theorem 4.1) since the variation distance for the fixed-point

magnetization |K(a0)| = 1
b |J ′(a0)| ≤ 1

b . For part (ii) we repeat the observation that, for τ the all-(+)

configuration, κ ≡ κ({µτ
T }) = supℓ≥1 K[J (ℓ)(0)]. Since |K(a)| = 1

b
J(a)

a |J ′(a)| ≤ 1
b for a ∈ [0, a0],

this implies κ ≤ 1
b . Notice that for ferromagnetic systems we get the stronger result that κ is

bounded rather than just κ2. (Clearly κ2 ≤ κ always.) This completes the proof of Theorem 6.1 for

ferromagnetic systems.

6.2 Antiferromagnetic systems

For an antiferromagnetic system, the function J has all the properties described earlier for the

hard-core model, and we again introduce the function J2(a) ≡ J(J(a)). Specifically, we have:

1. J is continuous and decreasing on [0,∞), with 0 < J(0) = λ(1/λ+)b < ∞ and J(∞) =
λ(λ−)b ≥ 0.

2. J has a unique fixed point a0.

3. The derivatives of J alternate signs (the odd derivatives are negative).

4. J2 is continuous and increasing on [0,∞), with J2(0) = J(J(0)) > J(∞) ≥ 0 and supa J2(a) ≤
J(0) < ∞.

5. a0 (the unique fixed point of J) is a fixed point of J2.

6. If the system admits a unique Gibbs measure then a0 is the unique fixed point of J2. If there

are multiple Gibbs measures then J2 has three fixed points a1 < a0 < a2, where J(a1) = a2

and J(a2) = a1.

7. The derivative J ′
2(a) is continuous. If a0 is the unique fixed point of J2 (the Gibbs measure is

unique) then J ′
2(a0) ≤ 1. If there are three fixed points then J ′

2(a0) > 1, and J ′
2(a) < 1 for

a ∈ [0, a1]. Consequently, the system admits a unique Gibbs measure if and only if |J ′(a0)| =√
J ′

2(a0) ≤ 1.

Again, the connection with the uniqueness of the Gibbs measure stems from the fact that the all-

(+) and all-(−) are extreme configurations (though, as in the hard-core model, the direction of the

monotonicity depends on the parity of the depth of the tree).
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We also observe that

J ′
2(a) = J ′(J(a)) · J ′(a)

= b · J(J(a))

J(a)
· K(J(a)) · b · J(a)

a
· K(a)

= b2 · J2(a)

a
· K(J(a))K(a).

Now, part (i) of Theorem 6.1 (the uniqueness case) follows by the same argument used for the

ferromagnetic case, since |K(a0)| = 1
b |J ′(a0)| ≤ 1

b when the Gibbs measure is unique. Part (ii) of

Theorem 6.1 follows from the same arguments used for the hard-core model in the non-uniqueness

regime, once we notice that, as in the hard-core model, for τ the all-(+) configuration, κ ≡
κ({µτ

T }) = supℓ≥1 |K[J(J
(ℓ)
2 (0))]| · |K[J

(ℓ)
2 (0)]|. This completes the proof of Theorem 6.1 for an-

tiferromagnetic systems.

7 The antiferromagnetic Potts model (colorings)

In this section we will prove Theorem 1.5: that the mixing time of the Glauber dynamics for

sampling proper colorings is O(n log n) for all boundary conditions provided that the number of

colors q ≥ b + 3, i.e., whenever the infinite-volume Gibbs measure is unique, except for the critical

value q = b + 2. In order to again make use of the machinery from Section 3 involving κ and γ, we

prove the following:

Theorem 7.1 For the colorings model with q colors, if the infinite-volume Gibbs measure is unique

then for every ε > 0 we have γ̂ ≤ 1
q−1 + ε (for a suitable choice d = d(ε) of the implicit constant in γ̂).

Since in [14] it was shown that the Gibbs measure is unique for all q ≥ b + 2, we conclude that for

these values of q, γ̂ ≤ 1
q−1 + ε < 1

b . Theorem 1.5 now follows from Theorem 3.3′′ as usual.

Remarks:

• Notice that when q = b + 2, even though γ̂ < 1/b (and thus γ̂κ̂b < 1), we cannot deduce O(n log n)
mixing time because, for this value of q, the Glauber dynamics is not connected for some boundary
conditions. (Specifically, this can occur for a subtree with appropriate boundary colors on the parent

of the root as well as on the leaves.) Recall that our general framework for O(n log n) mixing time,

presented in Theorem 3.3 and its variants, requires that the dynamics be connected for all sub-regions
and all boundary conditions; if this condition does not hold, then we cannot deduce a mixing time

of O(n log n) for any boundary condition (even one for which the dynamics is in fact connected).

See [30] for more on the relevance of this condition to our framework.

• If we consider a slightly modified heat-bath dynamics, where at each step the configuration of a

random edge (rather than the spin of a random single site) is updated, then the fact that γ̂ < 1
b

even
for the critical value q = b + 2 implies O(n log n) mixing time uniformly in the boundary condition,

since the edge dynamics remains connected for q = b + 2. See [30] for details.

• The fact that γ̂ < 1
b

means not only that the influence of any boundary configuration on the spin at

the root decays with the distance of the boundary from the root (as is already implied by the fact that

the Gibbs measure is unique), but that it decays exponentially fast. This fact is of independent interest,
and to the best of our understanding was not obvious from the proof of uniqueness given in [14].
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Proof of Theorem 7.1: The idea of the proof is the following. Consider a subset A, a site y ∈ ∂A
and z ∈ A, where z is a neighbor of y. Fix a disagreement at y, i.e., set two different spins s1

and s2 at y. We wish to bound ‖µηy,s1

A − µηy,s2

A ‖z. Suppose now that, without the condition at y,

the color of z is equally likely to be any of the q possible colors (as is the case when the boundary

around A is “free”). Thus, the distribution of the color of z in µηy,s1

A is uniform over the q − 1

colors other than s1, and in µηy,s2

A it is uniform over the colors other than s2. We then get that

‖µηy,s1

A − µηy,s2

A ‖z = 1
q−1 , because we can couple the two distributions such that spin s2 in µηy,s1

A is

coupled with spin s1 in µηy,s2

A and the two spins at z agree otherwise. (It is easy to see that this

is the optimal coupling.) In our proof, we use the hypothesis that the Gibbs measure is unique in

order to approximate the Gibbs distribution over A under any boundary configuration by the free

boundary case, and hence get that the variation distance is arbitrarily close (as a function of the

implicit parameter d) to 1
q−1 .

Let us proceed with the formal proof. Recall that in order to bound γ̂, we need to consider a

subset A that includes the full subtree of depth d rooted at z, and bound the variation distance

maxs1,s2 ‖µηy,s1

A −µηy,s2

A ‖z for an arbitrary boundary configuration η, where y is the (unique) neigh-

bor of z in ∂A.

Now it is easy to see that, for the colorings model,

‖µηy,s1

A − µηy,s2

A ‖z = max{µηy,s1

A (σz = s2), µ
ηy,s2

A (σz = s1)}.

This identity follows from an argument similar to that used above for the free boundary case,

as we now explain. Observe that, for every color s that differs from both s1 and s2, we have

µηy,s1

A (σz = s) =
1−µηy,s1

A (σz=s2)

1−µηy,s2
A (σz=s1)

· µηy,s2

A (σz = s). Hence, if µηy,s1

A (σz = s2) ≥ µηy,s2

A (σz = s1), then

µηy,s1

A (σz = s) ≤ µηy,s2

A (σz = s) for every s 6= s2, and so the event E = {σz = s2} maximizes the

expression |µηy,s1

A (E) − µηy,s2

A (E)| over all events E that only depend on σz.

As in the previous models we analyzed, it is now convenient to consider the distribution induced

by removing the edge from z to y (i.e., with a “free” condition at y). Recall that this distribution

is denoted µηy,∗

A . Let pz(s) = µηy,∗

A (σz = s), and notice that for the colorings model µηy,s1

A (σz =

s2) = pz(s2)
1−pz(s1) simply because µηy,s1

A ( · ) = µηy,∗

A (· |σz 6= s1). Thus, maxs1,s2 ‖µηy,s1

A − µηy,s2

A ‖z =

maxs1,s2 µηy,s1

A (σz = s2) = maxs1,s2

pz(s2)
1−pz(s1) .

To obtain the claimed bound on γ̂ we have to show that, for all sets A as above, and all boundary

configurations η, maxs1,s2

pz(s2)
1−pz(s1)

≤ 1
q−1 + ε. It is at this point that we use the assumption that

the Gibbs measure is unique. This means that, if d (the depth of the full subtree contained in A)

is large enough, the distribution pz( · ) is arbitrarily close to the uniform distribution, regardless of

the boundary configuration η. Thus, for every ε′ > 0, there exists a (large enough) constant d such

that pz(s) ≤ 1+ε′

q for all colors s. Hence, maxs1,s2

pz(s2)
1−pz(s1)

≤ 1+ε′

q−1−ε′ ≤ 1
q−1 + ε for some ε that goes

to zero as d → ∞, as required.

8 The ferromagnetic Potts model

In this section we will prove that, for the Potts model, the mixing time is O(n log n) in all the

situations described in Theorem 1.4. As in the discussion of other models in previous sections, we

use the machinery from Section 3. The following theorem sets out the relevant properties of κ
and γ.
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Theorem 8.1 For the Potts model with q colors at inverse temperature β the following hold:

(i) γ ≤ e2β−1
e2β+1

;

(ii) if the Gibbs measure is unique (i.e., β < β0) then γ̂ ≤ e2β−1
e2β+q−1

+ ε < 1
b (for a small enough ε

that depends on the choice of d, the implicit constant in γ̂);

(iii) if the Gibbs measure is not unique and the boundary condition τ is constant then κ ≡ κ({µτ
T }) ≤

1
b ;

(iv) if the boundary condition τ is free then κ = e2β−1
e2β+q−1

.

Part (i) of Theorem 1.4 follows from parts (i) and (ii) of Theorem 8.1 and the fact that, for any

boundary condition, κ ≤ γ. Part (ii) of Theorem 1.4 follows from parts (ii) and (iii) of Theorem 8.1

and the fact that γ < 1 (as is apparent from part (i) of the same theorem). Finally, part (iii) of

Theorem 1.4 follows from parts (i) and (iv) of Theorem 8.1.

Proof of Theorem 8.1: Much as we did for the previously discussed models, the first step we

take in order to bound κ and γ is expressing the influence of a boundary spin as a function of

the distribution of its neighboring interior spin, when the boundary spin is free. Generalizing

Proposition 4.2 from the Ising model to the Potts model gives:

Proposition 8.2 For any subset A ⊆ T , any boundary configuration η, any pair of spins (s1, s2), any

site y ∈ ∂A and any neighbor z ∈ A of y, we have

‖µηy,s1

A − µηy,s2

A ‖z = K(p(s1), p(s2)),

where p(s) = µηy,∗

A (σz = s) and the function K is defined by

K(p1, p2) = max

{
e2βp1

(e2β − 1)p1 + 1
− p1

(e2β − 1)p2 + 1
,

e2βp2

(e2β − 1)p2 + 1
− p2

(e2β − 1)p1 + 1

}
, (13)

and we notice that K(p1, p2) is the first term in the maximum if and only if p1 ≥ p2.

Proof: Let ps(s′) = µηy,s

A (σz = s′). Then ps(s) = e2βp(s)
e2βp(s)+1−p(s)

= e2βp(s)
(e2β−1)p(s)+1

, and for s′ 6= s,

ps(s′) = p(s′)
e2βp(s)+1−p(s)

= p(s′)
(e2β−1)p(s)+1

, by definition of the Potts model. Now, the proposition follows

once we notice that ‖µηy,s1

A − µηy,s2

A ‖z = max {ps1(s1) − ps2(s1), p
s2(s2) − ps1(s2)}. The reason for

this equality is that if p(s1) ≥ p(s2) then ps1(s) ≤ ps2(s) for all s 6= s1 (and ps1(s1) ≥ ps2(s1)), as a

simple calculation verifies.

We can now easily dispense with parts (ii) and (iv) of Theorem 8.1. For part (iv) we simply

observe that, for τ the free boundary condition, the distribution p(·) at the root of the tree is

uniform, i.e., p(s) = 1
q for all s, and therefore κ = K(1

q , 1
q ) = e2β−1

e2β+q−1
, as required. For part (ii),

observe that when the Gibbs measure is unique the distribution of the spin at the root of the tree

converges as the depth increases to the uniform distribution, uniformly in the boundary condition.

Thus, if A includes the full subtree of depth d rooted at z then, for every s, p(s) converges with d

to 1
q , i.e., γ̂ ≤ K(1

q + ε′, 1
q + ε′) = K(1

q , 1
q ) + ε ≤ e2β−1

e2β+q−1
+ ε for some ε′ and ε that go to zero as

d → ∞, as required. (Notice that the Gibbs measure is unique in the regime β < β0, for which
e2β−1

e2β+q−1
< 1

b .)
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We go on to prove part (i). Here we have to consider an arbitrary boundary configuration,

and we cannot assume the distribution p(·) is close to uniform because the bound should also

apply when the Gibbs distribution is not unique. Thus, the approach we take is to simply cal-

culate the maximum of K(p1, p2) over all possible distributions. As a first step, let Kmax(a) =
maxp1,p2 {K(p1, p2) : p1 + p2 = a} denote the maximum restricted to distributions in which the

sum of the two probabilities is a. We now observe that Kmax(a) is strictly increasing in a. This is a

consequence of the following two facts. First, K(p, p) is strictly increasing in p. Second, for p1 > p2,

K(p1, p3) > K(p1, p2) for every p3 ∈ (p2, p1]. We therefore conclude that maxp1,p2 K(p1, p2) =

Kmax(1) = maxp

{
e2βp

(e2β−1)p+1
− p

(e2β−1)(1−p)+1

}
. It is now easy to verify that the expression in the

maximization on the r.h.s. coincides with Kβ defined for the Ising model in Proposition 4.2, under

the change of variables p to R = 1−p
p , and that this expression is maximized for p = 1

2 . We therefore

conclude that γ ≤ maxp1,p2 K(p1, p2) = K(1
2 , 1

2 ) = e2β−1
e2β+1

.

We now go on to prove part (iii) of Theorem 8.1 (the last remaining part). Here the boundary

is constant. W.l.o.g. we assume it is all 1. In order to bound κ we need to consider the distribution

p(·) of the spin at the root of maximal subtrees with boundary condition all 1 at the bottom. Notice

that, by symmetry, p(s) is uniform in s 6= 1. Therefore, this distribution is completely specified by

p(1) since for s 6= 1, p(s) = 1−p(1)
q−1 . As we shall see below, the fact that the distribution at the root

is one-parameter allows for an analysis that is similar to that carried out for two-spin systems in

Section 6.

To start, notice that by Proposition 8.2, ‖µ1
Tz

− µs
Tz
‖ = K(p(1), 1−pz(1)

q−1 ), where we recall that

µs
Tz

= µηy,s

Tz
, and where pz(s) = µηy,∗

Tz
(σz = s). Similarly, for s1, s2 both different from 1, ‖µs1

T −
µs2

T ‖ = K(1−pz(1)
q−1 , 1−pz(1)

q−1 ). We now observe that, since the system is ferromagnetic, pz(1) ≥ 1
q for

all z. An explicit calculation reveals that for every p ≥ 1
q , K(p, 1−p

q−1 ) ≥ K(1−p
q−1 , 1−p

q−1 ). Thus in order

to bound κ, it is enough to bound K(pz(1),
1−pz(1)

q−1 ) for every z. It is now convenient to consider

the ratio R = 1−p(1)
p(1) and define

K(R) ≡ K

(
p(1),

1 − p(1)

q − 1

)
=

e2β

e2β + R
− 1

(e2β+q−2
q−1 )R + 1

. (14)

Observe that κ = supT supz K(Rz). Thus, we need to show that this supremum is at most 1
b .

We now use the fact that the distribution at the root is one-parameter once again, this time to

recursively calculate Rz, as we did earlier for two-spin systems. In particular, we notice that Rz =

(q − 1)
∏

w≺z F (Rw), where F (a) = ((e2β+q−2
q−1 )a + 1)/(a + e2β). As in the two-spin case, we let

J(a) = (q − 1)[F (a)]b and observe that Rz = J (ℓ)(0), where ℓ is the height of z. Notice that the

functions K(a) and J(a) as defined here correspond exactly to the same two functions, defined

for the two-spin system with parameters (λ, λ−, λ+) = (q − 1, e2β+q−2
q−1 , e2β). In other words, if we

translate the spin 1 of the Potts model to (+) and any non-1 spin to (−), the Potts model with all-1
boundary corresponds exactly to the above two-spin system with all-(+) boundary. To get some

intuition for this translation, notice that λ = q − 1 arises from the fact that a (−)-spin represents

q − 1 different spins (uniformly weighted) of the Potts model. For the same reason, λ− = e2β+q−2
q−1

arises from the fact that, given a non-1 spin, the interaction with another non-1 spin is composed of

a fraction 1/(q − 1) times e2β (when the neighboring site is of the same Potts spin), and a fraction

(q − 2)/(q − 1) times 1 (for the interaction with the other q − 2 spins).

Given this correspondence, it is now clear that κ for the all-1 boundary in the Potts model (the

supremum over K(Rz) given above) is exactly κ for the all-(+) boundary in the two-spin system.
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Thus, we can conclude the proof of Theorem 8.1 (iii) by using Theorem 6.1 (ii) for the two-spin

system, once we show that non-uniqueness of the Gibbs measure for the Potts model implies non-

uniqueness of the Gibbs measure in the two-spin system.

Now, if the Gibbs measure is not unique for Potts then, conditioned on the all-1 boundary

configuration, the probability that the spin at the root is 1 is greater than 1/q for arbitrarily large

trees (since the model is ferromagnetic). This implies that, in the two-spin system, the probability

of (+) is > 1/q, which immediately implies non-uniqueness in this system because a∗ = q − 1 is

always a fixed point of the function J defined above. (In fact, it is not too difficult to see that the

reverse implication holds as well, i.e., that the Gibbs measure is unique for the Potts model with

parameters (q, β) if and only if it is unique for the corresponding two-spin system.)

We conclude that, for the Potts model in the regime of non-uniqueness of the Gibbs measure and

for a constant boundary configuration, κ ≤ 1
b . This completes the proof of Theorem 8.1 part (iii).

9 Reconstruction problems

In this section we discuss reconstruction problems on trees, and show how the techniques we

developed earlier can be applied to establish new results in this context. In the models considered

here, information is transmitted from the root to all other nodes along the edges of the tree, with

a certain probability of error in the value transmitted on each edge (a branching random walk).

These error probabilities are the same for all edges, and errors on different edges are independent.

Models of this kind arise in genetics, describing the propagation of a genetic property from an

ancestor to its descendants, as well as in communication theory, where the process represents a tree

network in which each edge is a noisy channel. Usually, the question of interest is the following:

for the given error probabilities, can the value at the root be reconstructed from the values at a

level far below? In other words, is there significant correlation between the value at the root and

the values at the leaves?

This is where our earlier framework comes into play. In our development of the criterion for

rapid mixing based on κ, γ (given in detail in our previous paper [20] and summarized in Section 3

of the present paper), we showed as an intermediate step that, under the same criterion, the

correlation between the spin at the root and the configuration at the leaves goes to zero as the

depth of the tree tends to infinity. In this section we will adapt this theory to the reconstruction

setting, and thus establish ranges of values of the error probabilities for which reconstruction is

impossible, using the same κ, γ criterion. Notice that here, in contrast to previous sections, we are

not concerned with dynamical questions (i.e., convergence to equilibrium), but only with properties

of the equilibrium state.

The rest of this section is organized as follows: we first define the information flow model

precisely, then rewrite κ and γ in terms of this model, and finally apply the criterion to specific

choices of channels.

9.1 Definitions

We consider networks on the infinite tree T
b. A q-state channel is given by a stochastic matrix

P = {pij : i, j ∈ S}, where S = {1, . . . , q} is the alphabet of possible symbols. We always assume

that P defines an ergodic (irreducible and aperiodic) Markov chain, and therefore has a unique

stationary distribution π = (π1, . . . , πq), with πi > 0 for all i. A configuration σ ∈ ST
b

is then
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generated according to the following process. First, the symbol at the root is chosen according to π.

Thereafter, the configuration is generated recursively: if a site x ∈ T
b was assigned the symbol i ∈ S

then each of its children is independently assigned a symbol j, where for each j ∈ S the probability

of assigning j is pij. We denote by ν the probability measure on ST
b

resulting from this process.

Let us now discuss some properties of the measure ν. First, since the symbol at the root is chosen

from the stationary distribution π, for every x ∈ T
b the marginal of ν on σx is also π. Second, by

definition, the projection of ν on ST , where T is any initial portion of T
b, is exactly the same as the

distribution resulting from executing the same process on T . Third, since the process is Markovian,

it is not hard to check that ν is a Gibbs measure: i.e., for any finite subset A ⊂ T
b and boundary

configuration η, letting νη
A ≡ ν(· | η

Tb\A), the marginal of νη
A on SA depends only on η∂A. In fact, νη

A

can be constructed equivalently as follows. Without loss of generality assume that A is connected,

and let x be the node in A∪∂A that is closest to the root of T
b (i.e., x is the root of A∪∂A). Run the

process described above on A ∪ ∂A, starting at x. Then νη
A is the resulting distribution conditioned

on the event that the configuration of ∂A is given by η.11

We can also relate ν to an (infinite-volume) Gibbs measure associated with a spin system as

defined in Section 2. Let P = {pij} be a channel and π its stationary distribution. Define the edge

potential U(i, j) = − ln(pij/πj) and the site potential W (i) = − lnπi. These edge potentials are

symmetric, in accordance with our definition of spin systems in Section 2, provided the channel

is reversible, i.e., it satisfies the detailed balance conditions πipij = πjpji for all i, j ∈ S. For this

reason we will limit our attention in this paper to reversible channels (and all the examples we

discuss will have this property).12 Now it is not hard to check (see, e.g., [9, Chapter 12]) that ν is

a Gibbs measure for the spin system with the above potentials. As an example, if P is the binary

symmetric channel, in which q = 2 and pii = p ≥ 1
2 for i = 1, 2, then ν is the free Gibbs measure of

the Ising model with inverse temperature β = 1
2 ln( p

1−p) and no external field (h = 0).13

Before we continue, we note that reversible channels have another property which makes the

above correspondence with spin systems of interest. First, notice that reversibility implies that

the distribution νη
A can be generated as described above, except that now the node x at which

we start the process can be any node in A ∪ ∂A (with the edges of A ∪ ∂A reoriented so that x
becomes the root). Consider now the information flow process on the Bethe lattice rather than on

the tree T
b. Recall that the Bethe lattice differs from T

b only in that the root has b + 1 children,

rather than b; i.e., it is regular of degree b + 1. We will denote the Bethe lattice T̂
b. Since in

our definition of the information flow process the value at the root is chosen from the stationary

distribution of the channel, for reversible channels on T̂
b the resulting measure ν is translation-

invariant, and in particular, is a translation-invariant Gibbs measure of the corresponding spin

system. Translation-invariant Gibbs measures are of special interest in statistical physics, and this

is another motivation for considering the information flow models described in this section: they

give convenient representations of these special measures.

Now that the information flow process is defined, we can formulate the reconstruction problem

11In our original formulation ν
η
A is defined over the infinite configuration space, while here it is defined only over

SA∪∂A. However, this is a trivial point since in ν
η
A the configuration outside A is deterministically set to η.

12Our framework also applies to non-reversible channels, which give rise to asymmetric edge potentials. In turn, one

can make sense of spin systems with asymmetric potentials by viewing the tree as a directed graph with edges oriented

away from the root.

13The reader may notice that applying the above formula for translating channels to potentials to the binary symmetric

channel yields potentials that differ somewhat from those in the definition of the Ising model in Section 1. However, it

will be seen that the difference is the addition of a constant to the edge potential, and a (different) constant to the site

potential. It is easy to check that such shifts merely multiply the weights of all configurations in the Gibbs distribution

by a uniform factor, and hence do not change the spin system.
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precisely. Naturally, reconstructing the value at the root from values deep down the tree is possible

only if the value at the root is correlated with those from which we try to reconstruct it. Several

equivalent formulations of this correlation exist in the literature. We give here the simplest formu-

lation (for others see, e.g., [22, 18]). For a symbol s ∈ S, let νs be defined as ν conditioned on the

event that the symbol at the root is s. For two probability measures µ1, µ2, let ‖µ1 − µ2‖ℓ denote

the total variation distance between the projections of µ1 and µ2 on the configuration space of the

ℓth level of the tree.

Definition 9.1 We say that reconstruction is impossible for the channel P on T
b if for every s1, s2 ∈ S,

‖νs1 − νs2‖ℓ tends to zero as ℓ → ∞.

We mention in passing that, if we view ν as the Gibbs measure of an associated spin system, the fact

that reconstruction is impossible for ν is equivalent to saying that ν is an extremal Gibbs measure

of the spin system. (See, e.g., [9] for a discussion of extremal Gibbs measures.)

9.2 A criterion for non-reconstructibility

In our previous paper [20] we developed a new criterion for establishing decay of correlations for

Gibbs measures on trees, based on the two quantities κ, γ. (This criterion also implies rapid mixing

of the Glauber dynamics since, by an independent argument we gave in the same paper, decay of

correlations implies rapid mixing. The framework of Section 3 in the present paper is based on this

further implication; here, however, we are interested only in the decay of correlations part). Since

the measure ν is also a Gibbs measure, it is relatively straightforward to see that the same criterion

can be used to establish decay of correlations for ν, i.e., that reconstruction is impossible. In order

to use this criterion, we first redefine κ, γ in terms of the information flow model.

For a symbol s ∈ S and a node z ∈ T
b other than the root, let νs

Tz
be the distribution ν

conditioned on the event that the symbol at the parent of z is s. Rewriting the definitions of κ
and γ (Definition 3.1), we have:

Definition 9.2 Let P be a channel on the T
b, and ν its associated Gibbs measure as derived above.

Then the quantities κ ≡ κ(ν) and γ ≡ γ(ν) are defined by

(i) κ = supz∈Tb maxs,s′ ‖νs
Tz

− νs′
Tz
‖z;

(ii) γ = supA⊂Tb max ‖νηy,s

A −νηy,s′

A ‖z , where the maximum is taken over all boundary conditions η,14

all sites y ∈ ∂A, all neighbors z ∈ A of y, and all spins s, s′ ∈ S.

Notice from the definition of ν that κ takes the particularly simple form κ = maxi,j∈S
1
2

∑
k |pik −

pjk|; in the case of a binary channel (q = 2), this becomes |p11 − p21| = |p12 − p22|. For γ we do not

have such a clean general formula, and will need to bound it separately for specific models later

on.

We can now state our criterion for non-reconstructibility, which is analogous to our criterion for

rapid mixing from Section 3.

Theorem 9.3 Consider an arbitrary (ergodic and permissive) channel P on T
b. If κ ≡ κ(ν) and

γ ≡ γ(ν) satisfy γκb < 1 then reconstruction is impossible for P on T
b.

14Notice that ν
η
A may not be well-defined for some η if pij = 0 for some (i, j). For this reason we require that the

channel be permissive, i.e., that the spin-system corresponding to it is permissive. It is easy to see that in this case ν
η
A is

well-defined for every η if A is a connected subset.
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Proof: We first note that Claim 3.2 (after making the appropriate notational modifications) holds in

the present context as well since it only uses the fact that, in the measure under consideration, once

a value is fixed at a site x the configuration on a subtree Tz, where z is a child of x, is independent of

the configuration on the rest of the tree. It is easily seen that ν satisfies this property. We now refer

to Theorem 4.3 of [20], which is based on a claim analogous to Claim 3.2 and thus applies to any

measure for which Claim 3.2 holds.15 This theorem states that ν satisfies the so-called “variance

mixing” condition VM(ℓ, ǫ(ℓ)) with ǫ(ℓ) → 0 as ℓ → ∞. (VM is defined in [20, Definition 3.1].) But

by standard arguments this easily implies that ‖νs1 − νs2‖ℓ goes to zero as ℓ → ∞ for all s1, s2 ∈ S,

as required.

Remarks:

• The reader will notice that, in contrast to our earlier Theorem 3.3, the criterion in Theorem 9.3

involves only the product γκb and not max{γκb, γ}; in other words, we no longer require that γ < 1.
This is because we are aiming here only for decay of correlations as expressed by the variance mixing

condition, whereas to ensure O(n log n) mixing time we need a stronger “entropy mixing” condition.
The reader interested in the details of this issue may compare Theorems 4.3 and 5.1 of [20].

• We have stated Theorem 9.3 for the tree T
b. It can be verified that the same criterion applies for the

Bethe lattice T̂
b (where κ and γ are defined w.r.t. the associated Gibbs measure ν); this follows by

translating the machinery of [20] from T
b to the (very similar) T̂

b. In fact, notice that since κ depends

only on the transition probabilities of the channel, it has the same value on both T
b and T̂

b. Moreover,

although γ may take different values in the two settings, the only possible source of this difference

are distributions νη
A, where A includes the root (of either T

b or T̂
b). But for reversible channels

on T̂
b, translation invariance means that in the definition of γ we can w.l.o.g. take the maximum over

subsets A that do not include the root. This implies that the value of γ on T̂
b is at most that on T

b,

and hence if the criterion in Theorem 9.3 holds for a channel P on T
b it also holds for P on T̂

b. The

same remark applies to Theorems 9.3′ and 9.3′′ below.

As in the case of rapid mixing, we can also relax the above criterion slightly (following the same

line of reasoning as in Section 3 of the present paper). Define κ2, γ2, κ̂ and γ̂ in an analogous way

to Section 3.

Theorem 9.3′ In the setting of Theorem 9.3, if κ2 and γ2 satisfy γ2κ2b < 1 then reconstruction is

impossible.

Theorem 9.3′′ In the setting of Theorem 9.3, if κ̂ and γ̂ satisfy γ̂κ̂b < 1 then reconstruction is impos-

sible.

9.3 Applications

We now proceed to apply our criterion for various popular choices of channels. In most cases our

results mirror the best bounds in the literature, and in some specific cases we even manage to push

the bounds a little further. However, in all cases the main novelty of our argument is its simplicity:

we need only calculate κ and γ and apply the criterion in Theorem 9.3 or its variants.

General binary channel

Here we give bounds that apply to any binary (q = 2) channel P = {p11, p12, p21, p22}. In this

generality, the best known bound is due to Martin [18]. We now show how essentially the same

bound follows as an immediate consequence of our machinery.

15Again, strictly speaking this theorem is stated for the special case of the Ising model. However, it is easily seen that

the theorem extends to an arbitrary permissive spin system on trees. We refer to the PhD thesis of the third author [30,

Theorem 5.13] for the general formulation.
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Theorem 9.4 Let P be a binary channel. Reconstruction for P on T
b is impossible provided that

(√
p11p22 −

√
p12p21

)2
<

1

b
. (15)

Remarks:

• In light of the second remark after the proof of Theorem 9.3, the same non-reconstructibility bound

holds for the Bethe lattice T̂
b.

• The bound in [18] is slightly stronger than ours since there the range of non-reconstructibility includes

the case of equality in (15). On the other hand, our bound has implications for the asymptotic inde-
pendence between the symbol at the root and the configuration on a level far below that are stronger

than just non-reconstructibility (see [20] for details). This is also the reason our bound does not cover
the case of equality in (15).

• It is known (see, e.g., [22]) that reconstruction is possible when (p11−p21)
2 > 1

b
. Thus, for symmetric16

binary channels the bound in Theorem 9.4 is tight. However, for asymmetric channels there is a gap,

and there are specific channels well within this gap for which reconstruction is known to be possible
and others for which it is known to be impossible.

In order to prove Theorem 9.4 we use a simple calculation that is summarized in the following

lemma.

Lemma 9.5 For a binary channel P on T
b,

γ ≡ γ(ν) ≤ |√p11p22 −
√

p12p21|√
p11p22 +

√
p12p21

. (16)

Theorem 9.4 can now be derived using our criterion for non-reconstructibility in Theorem 9.3,

together with the fact that for binary channels κ = |p11 − p21| = |p12 − p22| = |p11p22 − p12p21|.

Proof of Lemma 9.5: First, notice that since we always assume the channel is ergodic we need

only consider the case in which at most one of the transition probabilities {p11, p12, p21, p22} is 0.

Moreover, if exactly one of these probabilities is 0 then the expression on the r.h.s. of (16) equals 1,

which is a trivial bound on γ. Therefore, from here onwards we assume w.l.o.g. that all four tran-

sition probabilities are strictly positive. Consider now an arbitrary finite subset A, an arbitrary

boundary configuration η and two neighboring sites y, z, with y ∈ ∂A and z ∈ A. We have to show

that ‖νηy,1

A − νηy,2

A ‖z is bounded above by the r.h.s. of (16). As mentioned before, the distribu-

tions νηy,1

A and νηy,2

A can be generated by running the information flow process on A ∪ ∂A starting

from y (where y is regarded as the root) and conditioning on the events that the configuration

on ∂A is ηy,1 and ηy,2 respectively. Indeed, for the rest of this proof the probability space under

consideration will be the one arising from running the information flow process on A∪ ∂A starting

from y. We write σ for the resulting random configuration and let ∂∗A = (∂A)\y. Since the channel

is binary, it is enough to bound |Pr(σz = 1 |σy = 1, σ∂∗A = η)−Pr(σz = 1 |σy = 2, σ∂∗A = η)|. Using

Bayes’ rule, we have

Pr(σz = 1 |σy = 1, σ∂∗A = η) =
Pr(σz = 1 |σy = 1)Pr(σ∂∗A = η |σz = 1, σy = 1)

Pr(σ∂∗A = η |σy = 1)
=

p11 · Pr(σ∂∗A = η |σz = 1, σy = 1)

p11 · Pr(σ∂∗A = η |σz = 1, σy = 1) + p12 · Pr(σ∂∗A = η |σz = 2, σy = 1)
,

16A channel is symmetric iff the associated matrix P is symmetric.
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with an analogous expression for Pr(σz = 1 |σy = 2, σ∂∗A = η). We now notice that

Pr(σ∂∗A = η |σz = 2, σy = 1)

Pr(σ∂∗A = η |σz = 1, σy = 1)
=

Pr(σ∂∗A = η |σz = 2, σy = 2)

Pr(σ∂∗A = η |σz = 1, σy = 2)
≡ R.

This is because, conditioned on a fixed value at y, the configurations on the subtrees rooted at

the children of y are independent of each other and since, conditioned on a fixed value at z, the

configuration on the subtree rooted at z is independent of y. We conclude that

‖νηy,1

A − νηy,2

A ‖z =

∣∣∣∣
p11

p11 + p12R
− p21

p21 + p22R

∣∣∣∣ . (17)

Now straightforward calculus verifies that, as a function of R, the maximum value of the r.h.s.

of (17) is achieved at R =
√

p11p21

p12p22
and that this maximum value is |

√
p11p22−

√
p12p21√

p11p22+
√

p12p21
|, thus complet-

ing the proof of the lemma.

Binary channel with one-sided deterministic error

We go on to consider a binary channel with one-sided deterministic error, i.e., p22 = 0. We write

the probability of error for the first symbol as p12 = w
1+w , where w is a positive real number. On the

Bethe lattice T̂
b, it is not hard to check (using the recipe given in Section 9.1) that the measure ν

arising from this channel corresponds to the unique translation-invariant Gibbs measure of the

hard-core (independent sets) spin system with activity parameter λ = w(1 + w)b.17 This measure

has been widely discussed in the literature (see, e.g., [18, 5]); a further reason for discussing it

here is that, for this specific binary channel, we will be able to improve on the general bound for

binary channels given above. To get a better intuition for the measure ν, we note that it is the

analog of the free-boundary measure for the Ising model with no external field. For a pictorial

illustration, we refer the reader back to Figure 2: whereas the fixed points a1, a2 correspond to the

limiting probabilities of occupation at the root under the “odd” and “even” boundary conditions

respectively, the middle fixed point a0 corresponds to the measure ν we consider here.

The best known bound for this channel is given in [18], where it is shown that reconstruction is

impossible whenever w
1+w

(
ln(1+λ)
ln(1+w) − 1

)
< 1. The importance of this bound is that the range of non-

reconstructibility in terms of λ does not vanish as b → ∞. Specifically, reconstruction is impossible

for λ ≤ e − 1 independently of b. We will now give another bound for non-reconstructibility using

our general technique. While our bound does vanish as b → ∞ when expressed in terms of λ (and

hence in this sense is weaker than that above), it is actually slightly better for small values of b (see

Table 1). Furthermore, it illustrates how the analysis we carried out in the spin systems context (for

the hard-core model) can be easily translated to achieve interesting results in the reconstruction

context.

Theorem 9.6 For the one-sided deterministic error binary channel with parameter w on T̂
b, recon-

struction is impossible whenever

w

1 + w

√√
1 + λ − 1√
1 + λ + 1

<
1

b
.

The reason the bound here is better than that for general binary channels in Theorem 9.4 is

that, for this particular channel, we are able to get a better bound on γ than the one in Lemma 9.5

17Strictly speaking, the above recipe does not yield the potentials that define the hard-core model. However, it easy to

verify that on a regular graph such as bT
b the spin systems arising from the two sets of potentials are equivalent.
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b Martin [18] Theorem 9.6

2 11.9 14.6

3 6.51 6.86

4 4.91 4.67

Table 1: Non-reconstruction thresholds (in terms of λ) for the binary channel with one-sided de-

terministic error and small values of b. The thresholds given by Martin [18] are compared with the

thresholds from Theorem 9.6 of the present paper. (Reconstruction is impossible for all values of λ
below the given threshold.) Whereas our bound is better for b ∈ {2, 3}, Martin’s bound is better

for all larger values of b. Furthermore, Martin’s bound is above e − 1 for all values of b while ours

vanishes as b → ∞.

(which for this channel takes the trivial value of 1). To do so we simply translate the bound we

obtained for the hard-core model in Section 5. (Actually we use the bound on γ2, which is even

better). Specifically, we use the fact that ν can equivalently be described as a Gibbs measure arising

from the hard-core spin system with activity parameter λ = w(1 + w)b (and thus the conditional

probabilities in finite subsets are the same as for this spin system). Translating the bound on γ2

from part (ii) of Theorem 5.1 (and noting that the same calculation works for the Bethe lattice T̂
b)

yields:

Lemma 9.7 For the one-sided deterministic error binary channel on T̂
b,

γ2 ≤

√√
1 + λ − 1√
1 + λ + 1

.

Theorem 9.6 now follows immediately from our criterion for non-reconstructibility given in Theo-

rem 9.3′ and the fact that for binary channels κ = |p12 − p22| = w
1+w .

Symmetric multi-channel

We now go on to discuss multi-channels, i.e., channels in which the number of symbols q may be

larger than two. Here we limit the discussion to symmetric channels, i.e., for some δ ∈ [0, 1
q−1 ],

pij = δ for i 6= j and pii = 1 − (q − 1)δ for all i ∈ S = {1, . . . , q}. We note that the measure ν
arising from this multi-channel corresponds to the free measure of the Potts model with inverse

temperature β = 1
2 ln(1

δ − (q − 1)). (Notice that for δ ≤ 1
q the correspondence is with the ferromag-

netic Potts model, and for δ > 1
q the correspondence is with the antiferromagnetic Potts model, i.e.,

β < 0.) The best known bound for this channel is due to Mossel and Peres [23] and states that

reconstruction is impossible whenever
(1−qδ)2

1−(q−2)δ ≤ 1
b . While this bound is tight for the binary case,

there is still a gap for q ≥ 3. (See [22] for a survey of known reconstruction thresholds.) We give a

simple proof of the above bound using our techniques, and marginally improve on it for q ≥ 3.

Theorem 9.8 Reconstruction is impossible for the symmetric multi-channel on T
b provided that

(1 − ǫ)
(1 − qδ)2

1 − (q − 2)δ
<

1

b
,

where ǫ = ǫ(b, q, δ) ≥ 0 with equality if and only if q = 2 or δ = 1
q−1 . [The exact definition of ǫ(b, q, δ)

is rather involved and appears in the proof of Lemma 9.9 below.]
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As for the previous channels we have considered, Theorem 9.8 follows from our criterion

for non-reconstructibility in Theorem 9.3 and bounds on κ, γ for this channel. Recall that κ =
maxi,j∈S

1
2

∑
k |pik − pjk| = |1− qδ|. As was the case for the previous channels, the more interesting

ingredient is the bound on γ:

Lemma 9.9 For the symmetric multi-channel on T
b,

γ ≤ (1 − ǫ)
|1 − qδ|

1 − (q − 2)δ
,

where ǫ = ǫ(b, q, δ) ≥ 0 is as claimed in Theorem 9.8.

Theorem 9.8 follows immediately from this lemma as in our previous examples.

Proof of Lemma 9.9: First notice that, by translating the bound on γ for the Potts model given in

Theorem 8.1(i) to the present setting, we immediately obtain γ ≤ |1−qδ|
1−(q−2)δ . (Although the bound

in Theorem 8.1(i) is given only for the case β ≥ 0, i.e., ǫ ≤ 1
q , it is easy to see that if we replace

the bound with its absolute value, the proof — with minor modifications to take account of the

change of sign — remains valid for β < 0 as well.) In order to obtain the factor 1 − ǫ improvement

we need to delve into the details of the proof of Theorem 8.1(i). Recall the functions K,Kmax

and the probabilities p1, p2 defined in that proof. The idea for obtaining the improvement is that,

if q ≥ 3 and there are no deterministic errors (i.e., δ < 1
q−1), then regardless of the boundary

condition a = p1 + p2 ≤ amax < 1, where amax depends on (b, q, ǫ). Recalling the arguments in

the original proof, this means that γ ≤ Kmax(amax) < Kmax(1) = |1−qδ|
1−(q−2)δ , where we have used

the fact that Kmax(a) is strictly increasing in a. To see that indeed amax < 1 for q ≥ 3 when there

are no deterministic errors, we simply observe that every symbol appears with positive probability

at the root, conditioned on any boundary condition. For example, using Bayes’ rule, δb

q is a trivial

lower bound on this conditional probability for the ferromagnetic case (δ ≤ 1
q ), while

[1−(q−1)δ]b

q is

a lower bound for the antiferromagnetic case (δ > 1
q ).
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