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Abstract

Let µ be a probability distribution on a vector space V . When m vectors u1, . . . , um

are drawn from µ, how likely are they to be linearly dependent? How is the dimension of

their linear span distributed? Such questions have been addressed in a number of papers

(e.g. [1],[2],[3],[6],[7]). Our work is motivated by problems in coding theory, and we address

these problems in the following context: Here V = Fn

q
, the n-dimensional vector space over the

field of order q and the distribution µ is uniform over the set of vectors with Hamming weight

≤ w. Let Mm×n be a random matrix whose rows u1, . . . , um are sampled independently from

µ. We investigate two associated random variables: (i) The rank of such a random matrix M ,

(ii) The cardinality of kernel(M). Finally, we consider the distribution of random sums of such

randomly chosen vectors u1, . . . , um.

Of particular interest to us is to find the least Hamming weight w where the restriction on

the vectors’ weights hardly matters. Namely, where the answers become nearly identical with

the case w = n, in which vectors are selected uniformly from the entire space.
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1 Introduction

Our notation is rather standard: Fq = GF (q) is the field of order q. The collection of m × n

matrices over Fq is denoted by Mm,n,q, and the same set endowed with a uniform distribution is the

probability space Ωm,n,q. The rank of matrices is thus viewed as an integer-valued random variable

on Ωm,n,q. The distribution of the rank is known and easy to calculate. Namely, the probability

that a matrix A drawn from Ωm,n,q has rank r is exactly:

1

q(n−r)(m−r)

r−1∏

i=0

(1 − qi−n)(1 − qi−m)

1 − qi−r
(1)

A sketchy proof for this standard fact is provided in the Appendix. In contrast, similar problems

for real matrices are much more difficult. See Kahn, Komlós and Szemerédi [6] and the references

therein.

Motivated by problems from Coding Theory, we study similar questions for matrices whose

rows satisfy certain bounds on their Hamming weights. (The Hamming weight of a vector v ∈ Fn
q ,

denoted |v| is the number of non-zero coordinates in v.) Let:

W = W (w,n, q) =
{
v ∈ Fn

q | |v| ≤ w
}

be the set of n-dimensional vectors over Fq with Hamming weight bounded by w.

The set of those m × n matrices whose rows belong to W (w,n, q) is called Mw,m,n,q, and this set

endowed with uniform distribution, is the probability space Ωw,m,n,q. Clearly, Ωn,m,n,q = Ωm,n,q,

and we ask how large w should be for the rank to be distributed over Ωw,m,n,q in essentially the

same way that it is distributed in Ωm,n,q (i.e., very close to the expression given in Formula (1)). We

do not answer this question in full, but give evidence in support of the conjecture that this happens

iff w ≥ ln n+ω(1). Notice that w = ln n−ω(1) is certainly too small. A standard coupon collector

argument shows that when m = n, the (square) matrix almost surely has an all zeros column, and

thus, its rank is less than n almost surely. This contradicts the fact that the probability of full

rank is bounded away from 0 the matrix is selected uniformly at random with no restrictions on

the weight (this fact is an easy consequence of Formula 1).
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A closely related random variable that we investigate is the cardinality of the kernel of a matrix

in Ωw,m,n,q. If the matrix has rank r, then there are qm−r vectors in the kernel. It is shown that

already for w = ln n + ω(1), the expectation of this random variable, E(qm−r), is close to the

expectation in the weight unbounded case where matrices are chosen from Ωm,n,q:

Theorem 1.1 Let Ω = Ωw,m,n,q be the above probability space of m × n matrices. Consider the

rank r(·) as a random variable on Ω. Then the expected cardinality of the kernel satisfies:

1 +
qm − 1

qn
≤ E(qm−r)

with equality when w = n. Moreover, if w ≥ ln n + ω(1), then for every m,

E(qm−r) ≤ (1 + o(1))(1 +
qm − 1

qn
)

as n → ∞.

Theorem 1.1 implies, for sufficiently large w, that a random matrix is very likely to have full rank,

or at least nearly full rank. This is expressed by the two results below. Recall that f = ω(g) means

that f(n)
g(n) tends to infinity with n. When |n−m| grows to infinity (with n), full rank is almost sure:

Corollary 1.2 If w > ln n + ω(1) and if |n − m| ≥ ω(1) then almost every matrix in Ωw,m,n,q has

full rank (i.e. r = min{m,n}).

In any case, even when |n − m| is bounded, almost full rank is almost certain:

Corollary 1.3 If w > ln n + ω(1) and if r′ ≤ min{m,n} − ω(1) then Pr(r ≤ r′) = o(1).

Notice, in comparison, (and this easily follows from Formula 1) that if row weights are not restricted,

then almost sure full rank is attained iff |n − m| = ω(1). Furthermore, if |n − m| is bounded,

Pr(r ≤ r′) → 0 (as n grows) iff r′ ≤ min{m,n}−ω(1). In words, rank ≤ r′ is vanishingly rare only

when we are far from the case of full rank. (The Appendix contains the derivations of these facts

about the unrestricted case). Thus, corollaries 1.2 and 1.3 imply this: Those values of the rank

which, without restrictions on the weight, are (asymptotically) either extremely likely or extremely

unlikely, exhibit the same qualitative behavior, provided that w ≥ ln n + ω(1).
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This still leaves out those ranks that occur with probabilities which are bounded away from

zero and one. Namely, when the differences among n, m, and r are all bounded. We do not know

if here, too, the probabilities are asymptotically the same with and without restrictions on the

weights. What we do know, however, is that restricting the weight, even to ln n + ω(1), has almost

(asymptotically) no effect on the expected size of the kernel of the matrix for any values of n and

m (Theorem 1.1). It seems reasonable to suspect that the same bound on weights would lead to a

distribution of the rank that agrees with the unrestricted situation. This statement receives some

support from computer simulations that we have carried out.

Similar problems have been considered (e.g.[1], [3], and [7]) with a different probability dis-

tribution on random matrices. There, each matrix entry aij is independently drawn from some

probability distribution Pij on the elements of the field Fq, that is uniform on the non-zero ele-

ments of the field.

In [7], Kovalneko shows that for the binary case (q = 2), as long as Pij(1) is bounded away

from zero and one, the distribution of the rank converges as n → ∞ to the same distribution

with Pij(1) = 1
2 (this is the same probability space as our Ωm,n,q). Cooper [3] improves this result

and shows that for m = n (the square matrix), the probability of a full rank matrix converges to

the same probability with Pij(1) = 1
2 as long as Pij(0) ≤ 1 − ln n+∆

n
where ∆ = ∆(n) grows to

infinity slowly enough. We also mention Balakin [1], who shows, for general q, that under the same

restriction on Pij as the last one and when |m− n| ≥ ω(1), the chosen matrix has full rank almost

surely.

Remark 1.4 Notice that the results mentioned here do not translate automatically into our random

model. It would be reasonable to presume that our results for Ωw,m,n,q should more-or-less coincide

with those for Pij(0) = 1 − w
n
. However, the probability spaces of matrices generated by the two

models are different, even asymptotically. For example, if in our model, w = o(n) then the weight

of the first row is exactly w with probability 1 − o(1). Clearly no such cocentration takes place at

the Pij model.

Calkin [2] has considered a random model similar to ours. In his paper the m vectors are
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chosen independently and uniformly among those with weight exactly w (whereas we choose from

the vectors with weight at most w). One of the questions he addresses is this: How large can m be

(as a function of w) for these vectors to still be almost surely independent (i.e., the matrix should

have full rank)? In order to answer that question, Calkin calculates the expected size of the kernel.

His answer implies that for w = ω(1), as long as m
n

is bounded away from 1, E(qm−r) → 1 as

n → ∞, and therefore, under these conditions, these vectors are almost surely independent. Our

answer, in contrast, applies for any unbounded difference between n and m. This, however, makes

it necessary for us to require a larger w (logarithmic in n). We still do not know what the exact

conclusions are for log n ≫ w ≫ 1. Perhaps n − m > max{ω(1), ne−w} is enough in general (this

seems plausible and is consistent with what is known).

The proof of Theorem 1.1 is based on an analysis of the distribution of sums of vectors with

bounded weights. Let w1, ..., wm ≤ n be nonnegative integers. We let µ = µw1,...,wm be the

probability distribution of the vector v1 ⊕ ... ⊕ vm where each vi is chosen independently and

uniformly from W (wi, n, q). Specifically, we estimate how much µ(~0), the probability of the zero

vector deviates from uniform. We show:

Theorem 1.5 Let w1, ..., wm be nonnegative integers such that

∑
wi ≥ ( q−1

q
)n ln n + ω(n). Then

q−n ≤ µw1,...,wm(~0) ≤ (1 + o(1))q−n

as n → ∞.

The proof proceeds by first reducing the problem to the case where wi = 1 for every i. When

q = 2, this translates to a problem concerning random walks on the cube. To deal with general

values of q, we need to adapt several known results (e.g. [4],[5],[9]) about this random walk.
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2 The distribution of vector sums

2.1 Preliminaries

2.1.1 Harmonic Analysis on the q-Cube

The q-cube in the title is simply a vector space over the field Fq, the familiar case being q = 2.

Henceforth, we refer to the q-cube simply as cube. If µwi
is the uniform distribution on W (wi, n, q),

then µw1,...,wm is the convolution of the distributions µw1, µw2 , . . .. We need to make some prelimi-

nary remarks on convolutions in general.

If f and g are real functions on Fn
q , then their convolution f ∗ g, is the function:

f ∗ g(x) =
∑

y∈F n
q

f(x ⊖ y)g(y) (2)

Sums and differences of vectors in Fn
q are denoted by ⊕ and ⊖.

Remark 2.1 We purposely suppress a normalization factor in this definition. As mentioned below,

this will make our notation more convenient.

A function f on the cube is symmetric if f(x) depends only on |x|, the Hamming weight of x.

We say that a symmetric function is nonincreasing if it is nonincreasing in |x|.

Theorem 2.2 The class of symmetric nonnegative nonincreasing real functions on the cube is

closed under convolution.

Proof: A symmetric nonnegative nonincreasing function on the cube, can be uniquely expressed

as:

f =
n∑

i=1

ci1W (i,n,q)

where 1W (i,n,q) is the characteristic function of W (i, n, q) and the coefficients ci are nonnegative.

The convolution of two such functions is, therefore,

f ∗ g = (
n∑

i=1

ci1W (i,n,q)) ∗ (
n∑

i=1

di1W (i,n,q)) =
n∑

i=1

n∑

j=1

cidj (1W (i,n,q) ∗ 1W (j,n,q)).
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Our claim clearly follows if we can show that the (symmetric nonnegative) function

hi,j ≡ 1W (i,n,q) ∗ 1W (j,n,q)

is nonincreasing. To this end, it suffices (by induction) to consider x and y whose Hamming weight

differ by one, say |x| = |y|+1, and show that hi,j(y) ≥ hi,j(x). Since hi,j is symmetric, it is enough

to consider the case when x ⊖ y = e1 with x1 = 1 and y1 = 0. Since

hi,j(x) = |(x ⊖ W (i, n, q)) ∩ W (j, n, q)|

we need to show that

|(x ⊖ W (i, n, q)) ∩ W (j, n, q)| ≤ |(y ⊖ W (i, n, q)) ∩ W (j, n, q)|.

In order to do so, we define a bijection φ : y⊖W (i, n, q) −→ x⊖W (i, n, q) (these two sets have the

same cardinality, of course) such that |φ(v)| ≥ |v|. Let H = {u||u| = i and u1 = 0} ⊂ W (i, n, q)

and let L = W (i, n, q) \ H. Let v ∈ y ⊖ W (i, n, q) = y ⊖ u, then define φ via:

φ(v) =





v ⊕ e1 u ∈ H

v u ∈ L





(3)

That φ is bijective follows, since x⊖W (i, n, q) is the disjoint union of y⊖L and y⊕ e1 ⊖H (notice

that y ⊖ L = x ⊖ L). The requirement |φ(v)| ≥ |v|, has to be checked only at the first coordinate

and for u ∈ H. Then, however, v1 = y1 − u1 = 0, whereas φ(v)1 = 1. 2

Consider the Fourier Transform:

f̂(x) =
∑

y∈F n
q

ω<x,y>
q f(y) (4)

where ωq is the primitive unit root of order q.

It is well known that f̂ ∗ g = f̂ ĝ. It is here that the absence of normalization factors in our

definitions of the transform and convolutions rather convenient.

Lemma 2.3

f1 ∗ ... ∗ fm(x) = q−n[
m∏

i=1

(
∑

y∈F n
q

fi(y)) +
∑

y 6=~0

ω<x,y>
q

m∏

i=1

f̂i(y) ]
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Proof: Start with

g ≡ ̂(f1 ∗ ... ∗ fm) =
m∏

i=1

f̂i.

Reapplying the transform, we can write:

f1 ∗ ... ∗ fm(x) = q−nĝ(x) = q−n
∑

y∈F n
q

ω<x,y>
q g(y) =

= q−n [ g(~0) +
∑

y 6=~0

ω<x,y>
q g(y) ] =

= q−n [
m∏

i=1

f̂i(~0) +
∑

y 6=~0

ω<x,y>
q

m∏

i=1

f̂i(y) ] =

= q−n [
m∏

i=1

(
∑

y∈F n
q

fi(y)) +
∑

y 6=~0

ω<x,y>
q

m∏

i=1

f̂i(y) ]. 2

2.1.2 Krawtchouk Polynomials

The Krawtchouk polynomials K
(n,q)
k are defined as follows:

K
(n,q)
k (x) =

k∑

j=0

(−1)j
(

x

j

)(
n − x

k − j

)
(q − 1)k−j (5)

It is known that Kk is the transform of the characteristic function of the k-th level of the cube (i.e.,

those vectors of Hamming weight k). Thus, if f is the characteristic function of W (w,n, q), then

f̂(v) =
w∑

k=0

K
(n,q)
k (|v|) (6)

We need the following standard fact on these polynomials (e.g. Equation (1.2.15) in [8]):

w∑

k=0

K
(n,q)
k (x) = K(n−1,q)

w (x − 1) (7)

We also recall the first Krawtchouk Polynomial:

K
(n,q)
1 (x) = (q − 1)n − qx (8)
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2.1.3 Domination

All vectors in this section are real and have real nonnegative entries. A vector v = (v1, v2, . . .) is

called nonincreasing, if v1 ≥ v2 ≥ . . .. The vector v = (a1, ..., ak) is said to dominate u = (b1, ..., bk)

(denoted v � u) iff
i∑

j=1

aj ≥
i∑

j=1

bj

for every 1 ≤ i ≤ k − 1, and
k∑

j=1

aj =
k∑

j=1

bj .

We make the following easy observations:

Lemma 2.4 Let v = (v1, v2, . . .) be a nonincreasing real vector with exactly k positive coordinates.

Define the vector u via: u1 = u2 = . . . = uk = 1
k

∑
vj, and uk+1 = uk+2 = . . . = 0. Then v � u.

The inner product of vectors u, v is denoted < u, v >.

Lemma 2.5 Let u, v,w be real vectors of the same dimension. If v is nonnegative and nonincreas-

ing, and u � w, then < v, u > ≥ < v,w >.

2.2 Proof of Theorem 1.5

First we prove:

Lemma 2.6 For any m and any w1, ..., wm, the (symmetric nonnegative) function µw1,...,wm is

nonincreasing (and therefore µw1,...,wm(~0) ≥ q−n).

Proof: The proof is by induction on m and follows easily from Theorem 2.2. 2

Note that the claim of Theorem 1.5 depends only on the sum
∑

wi and not the specific distri-

bution. What we show is that for a given sum, the worst case occurs when wi = 1 for every i. We

show this by considering what happens when a weight wi is replaced by wi repeats of the weight 1.

Namely:

Lemma 2.7 For any m integers w1, ..., wm and any 1 ≤ i ≤ m:

µw1,...,wm(~0) ≤ µw1,..,wi−1,1,1,..,1,wi+1,..,wm(~0)
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(There are wi 1’s in the r.h.s. expression.)

Proof: It will be useful to express

µw1,...,wm = µw1,..,wi−1,wi+1,..,wm ∗ µwi

and

µw1,..,wi−1,1,1,..,1,wi+1,..,wm = µw1,..,wi−1,wi+1,..,wm ∗ (µ∗wi

1 ).

The intuition underlying our proof is that µwi
is the uniform probability distribution on W (wi, n, q).

On the other hand, µ∗wi

1 is some nonincreasing distribution over the same set. Thus, adding a

random vector sampled from µwi
gets us further away, on average, than one sampled from µ∗wi

1 .

We need to evaluate the relevant measures at ~0. Note that for any two symmetric real functions

on the cube f ∗ g(~0) =< f, g >. This is because x ⊕ y = ~0 implies that |x| = |y|, and therefore, by

symmetry, g(x) = g(y). We therefore have:

µw1,...,wm(~0) = < µw1,..,wi−1,wi+1,..,wm , µwi
>

and

µw1,..,wi−1,1,1,..,1,wi+1,..,wm(~0) = < µw1,..,wi−1,wi+1,..,wm , µ∗wi

1 >

The notion of domination is easily extended to the realm of symmetric functions on the cube.

Coordinates are points of the cube, and they are arranged in increasing order of Hamming weight.

The internal ordering of points with equal weights is immaterial, when dealing with symmetric

functions. We plan to deduce from Lemma 2.4 that µ∗wi

1 � µwi
. Once this is shown, Lemma 2.5

implies

µw1,..,wi−1,1,1,..,1,wi+1,..,wm(~0) ≥ µw1,...,wm(~0) (9)

Let us verify the assumptions in Lemma 2.4. Indeed:

1) If |v| > wi, then µwi
(v) = µ∗wi

1 (v) = 0

2) If |v| ≤ wi, then µwi
(v) = 1

|W (wi,n,q)| (independent of the vector v)

3) µ∗wi

1 is a symmetric nonnegative nonincreasing function

4) |µwi
| = |µ∗wi

1 | = 1 (probability measures)
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By Lemma 2.4 µ∗wi

1 � µwi
holds, and since µw1,..,wi−1,wi+1,..,wm is a symmetric nonnegative nonin-

creasing function by Lemma 2.5:

< µw1,..,wi−1,wi+1,..,wm , µ∗wi

1 > ≥ < µw1,..,wi−1,wi+1,..,wm , µwi
> .

Inequality 9 follows. 2

Repeated application of this lemma yields:

Corollary 2.8 For any m and any nonnegative integers w1, ..., wm whose sum is w:

µw1,...,wm(~0) ≤ µ∗w
1 (~0)

Now we need to extend a known fact about the rate of convergence of a random walk on the

cube from q = 2 to general q. We use Fourier analysis to calculate the probability of the zero vector

as done e.g., in [4] and [5], but we do it for general q.

Theorem 2.9 If m ≥ (q−1)n+1
q

(ln n + b), then µ∗m
1 (~0) ≤ q−ne(q−1)e−b

for any b.

Proof: Let

f = µ1 =
χ1

(q − 1)n + 1

where χ1 is the characteristic function of W (1, n, q). According to Lemma 2.3:

f∗m(~0) = q−n[ (
∑

u∈F n
q

f(u))m +
∑

u 6=~0

(f̂(u))m ]

Recall that

f̂(u) =
1

(q − 1)n + 1

1∑

k=0

K
(n,q)
k (|u|) =

1

(q − 1)n + 1
K

(n−1,q)
1 (|u| − 1),

by Identity (7) from the preliminaries. The other term is easy to evaluate, since f is a probability

measure, i.e.,
∑

u f(u) = 1. Consequently,

f∗m(~0) = q−n(1 +
∑

u 6=~0

[
K

(n−1,q)
1 (|u| − 1)|
(q − 1)n + 1

]m) =

= q−n(1 +
n∑

x=1

(q − 1)x
(

n

x

)
[
K

(n−1,q)
1 (x − 1)

(q − 1)n + 1
]m)
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Now use the expression for K1 (Equation (8) from the preliminaries) to conclude:

f∗m(~0) = q−n
n∑

x=0

(q − 1)x
(

n

x

)
[1 − qx

(q − 1)n + 1
]m.

We use the inequality (1−t)m ≤ e−mt that holds for every real t and every odd integer m. Therefore,

for odd m:

qnµ∗m
1 (~0) ≤

n∑

x=0

(q − 1)x
(

n

x

)
e
− qmx

(q−1)n+1 = [1 + (q − 1)e
− qm

(q−1)n+1 ]n ≤ (10)

≤ [1 + (q − 1)e−(ln n+b)]n ≤ e(q−1)e−b

Since µ∗m
1 (~0) is a monotone nonincreasing function of m this bound applies to even m as well. 2

Notice that if b tends to infinity with n, then e(q−1)e−b

= 1 + o(1), and we get Theorem 1.5 by

applying Corollary 2.8 to the last result.

3 The Expected Cardinality of the Kernel

In this section we discuss the distribution of the size of the kernel of the random matrix and its

relation to the distribution of the rank of the matrix. We show that already for w = ln n+ω(1) the

expected size of the kernel is essentially the same as in the case where no bounds are placed on the

weights (Theorem 1.1). We use this result to bound the expected value of the rank of the random

matrix and in turn the probability of full and small rank matrices (Corollaries 1.2 and 1.3).

If an m × n matrix A over Fq has rank r, then its left kernel {x | xA = ~0} has cardinality

qm−r. Consider the size of the left kernel as a random variable over Ωw,m,n,q. We denote its

expectation by Em
w . It is not hard to verify that the same random variable over Ωm,n,q (no bound

on weights) has expectation Em = 1 + qm−1
qn . We now prove Theorem 1.1 which states that as long

as w ≥ ln n + ω(1):

Em ≤ Em
w ≤ (1 + o(1))Em

Notice that this also yields the same relationship for the expected size of the right kernels by

multiplying by qn−m.
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Proof of Theorem 1.1: Since the left kernel is {x | xA = ~0},

Em
w =

∑

x∈F m
q

Pr(xA = ~0)

For a given vector x of weight t, Pr(xA = ~0) = µ∗t
w (~0). The zero vector is always in the kernel,

whence:

Em
w = 1 +

m∑

t=1

(q − 1)t
(

m

t

)
µ∗t

w (~0) (11)

According to Lemma 2.6, µ∗t
w (~0) ≥ q−n = µ∗t

n (~0) whence Em
w ≥ Em. We also wish to upper bound

Em
w by (1 + o(1))(1 + qm−n). To this end, using (11), it is enough to show that

m∑

t=1

(q − 1)t
(

m

t

)
µ∗t

w (~0) ≤ qm−n + o(max{1, qm−n}) (12)

In order to obtain this inequality, we use the upper bounds on µ∗t
w (~0) that follow from Theorem 1.5

and some intermediate calculations from Theorem 2.9.

Notice that wt ≥ q−1
q

n ln n + ω(n) for the vast majority of the terms in the sum on the l.h.s.

of (12). Thus Theorem 1.5 yields an upper bound on µ∗t
w (~0) for these terms. Namely, when

t ≥ ( q−1
q

− 1
ln n

)n then wt ≥ ( q−1
q

− 1
ln n

)n(ln n + ω(1)) ≥ q−1
q

n lnn + ω(n). It follows that

m∑

t=( q−1
q

− 1
ln n

)n

(q − 1)t
(

m

t

)
µ∗t

w (~0) ≤ (1 + o(1))q−n
m∑

t=0

(q − 1)t
(

m

t

)
= (1 + o(1))qm−n

It remains to show that

∆(m) ≡
( q−1

q
− 1

ln n
)n∑

t=1

(q − 1)t
(

m

t

)
µ∗t

w (~0) ≤ o(max{1, qm−n})

One may expect that the hardest case to prove is when m = n. Indeed it suffices to consider this

case as we now explain: For m ≤ n we wish to show that ∆(m) ≤ o(1), but ∆(m) is an increasing

function of m, so that m = n is clearly the hardest case in this range. For m ≥ n we wish to show

that ∆(m) ≤ o(qm−n). Now ∆(m) ≤ q∆(m − 1) when m ≥ n, and therefore, again, one should

only consider the case m = n. To see this inequality, note that
(m

t

)
= m

m−t

(m−1
t

)
≤ q

(m−1
t

)
as long

as t ≤ q−1
q

m, which holds throughout the entire range of summation.
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It remains to show that ∆ ≡ ∆(n) ≤ o(1). In order to establish an upper bound on ∆, we

need an upper bound on µ∗t
w (~0). Throughout the rest of the proof we use the following fact:

µ∗t
w (~0) ≤ µ∗wt

1 (~0) ≤ q−n[1 + (q − 1)e
− qwt

(q−1)n+1 ]n.

The first inequality is an application of Corollary 2.8 and the second is inequality (10) from the

proof of Lemma 2.9. We also define Λ ≡ (q−1)n+1
qw

. Using the inequality e−x ≤ 1 − x
1+x

we obtain

that

µ∗t
w (~0) ≤ q−n[1 + (q − 1)e−

t
Λ ]n ≤ q−n[1 + (q − 1)(1 −

t
Λ

1 + t
Λ

)]n = [
q − (q − 1)

t
Λ

1+ t
Λ

q
]n ≤

≤ e
−

(q−1)nt

qΛ(1+ t
Λ

) = e
− wt

1+ t
Λ ≤ e−(1− t

Λ
)wt

Before going into the detailed calculations concerning ∆, we note a few standard facts about

binomial coefficients that we need:

1.
(n

t

)
≤ (ne

t
)t [Stirling’s approximation]

2. Let the function Hq be defined as follows: Hq(x) ≡ x logq(q−1)−x logq x−(1−x) logq(1−x).

Then
∑k

t=0(q − 1)t
(n

t

)
≤ qHq( k

n
)n for any 0 ≤ k ≤ q−1

q
n. See (5.1.5) in [8] for a proof of this

fact.

3. Hq(x) increases from zero to one as x goes from zero to q−1
q

.

4. Hq(
q−1

q
− x) ≤ 1− 2

ln q
x2 [This fact can be verified by comparing the first two derivatives of

both functions].

We show that ∆ ≤ o(1) by splitting the range of summation into four subranges s.t. ∆ =

∆1 + ∆2 + ∆3 + ∆4, and showing that each of the ∆i is at most o(1). The exact definition of the

subranges will be given as we go along and prove the upper bound for each of them.

We start with ∆1. Here, t goes from 1 to Λ
lnn

. Notice that t
Λ ≤ 1

lnn
for all t in this range. Thus,

in this range,

µ∗t
w (~0) ≤ e−(1− t

Λ
)wt ≤ e−(1− 1

ln n
)wt ≤ e−(ln n+ω(1))t

13



Hence,

∆1 =

Λ
ln n∑

t=1

(q − 1)t
(

n

t

)
µ∗t

w ≤
∞∑

t=1

[(q − 1)ne−(ln n+ω(1))]t =
∞∑

t=1

[(q − 1)e−ω(1)]t ≤ o(1)

We go on to ∆2. Here, t goes from Λ
ln n

to Λ. t
Λ ≤ 1 for all t in this range, and thus,

µ∗t
w (~0) ≤ e

− wt

1+ t
Λ ≤ e−

wt
2

Hence,

∆2 =
Λ∑

t= Λ
lnn

(q − 1)t
(

n

t

)
µ∗t

w ≤
Λ∑

t= Λ
ln n

(
(q − 1)ne

t
)te−

wt
2

Where the last inequality is an application of Stirling’s approximation. Notice that since t ≥
(q−1)n+1

qw ln n
, in this range (q−1)n

t
≤ qw ln n, and thus

∆2 ≤
∑

t

[O(e−
w
2 w ln n)]t ≤

∑

t

[O(
ln2 n√

n
)]t ≤ o(1)

Before we continue to ∆3, we let γ be some constant s.t. 1+(q−1)e−1

q
< γ < 1, and define δ as

the unique solution to the equation Hq(δ) = (logq(
γq

1+(q−1)e−1 )) in the range q−1
q

> δ > 0. (This is

well-defined, since Hq(x) increases from zero to one in the interval [0, q−1
q

]).

In ∆3, the range of t is from Λ to δn. Since t
Λ ≥ 1 for all t in this range,

µ∗t
w (~0) ≤ [

1 + (q − 1)e−
t
Λ

q
]n ≤ [

1 + (q − 1)e−1

q
]n

Hence,

∆3 =
δn∑

t=Λ

(q − 1)t
(

n

t

)
µ∗t

w ≤ [
1 + (q − 1)e−1

q
]n

δn∑

t=0

(q − 1)t
(

n

t

)
≤

≤ [
(1 + (q − 1)e−1)qHq(δ)

q
]n = γn ≤ o(1)

We go on to ∆4. Here, t goes from δn to ( q−1
q

− 1
lnn

)n (the end of the range for ∆). We let

ǫ = δq
q−1 > 0. Since t

Λ ≥ ǫw for all t in this range,

µ∗t
w (~0) ≤ [

1 + (q − 1)e−
t
Λ

q
]n ≤ q−n[1 + (q − 1)e−ǫw]n ≤ q−ne(q−1)n1−ǫ

14



Hence,

∆4 =

( q−1
q

− 1
ln n

)n∑

t=δn

(q − 1)t
(

n

t

)
µ∗t

w ≤ q−ne(q−1)n1−ǫ

( q−1
q

− 1
ln n

)n∑

t=0

(q − 1)t
(

n

t

)
≤

≤ q−ne(q−1)n1−ǫ

q
nHq( q−1

q
− 1

ln n
)

We now use the fact that Hq(
q−1

q
− x) ≤ 1 − 2

ln q
x2 to deduce that Hq(

q−1
q

− 1
lnn

) ≤ 1 − 2
ln q ln2 n

,

and thus,

∆4 ≤ q−ne(q−1)n1−ǫ

q
n(1− 2

ln q ln2 n
)

= e(q−1)n1−ǫ− 2n

ln2 n ≤ o(1) 2

We now use this result to bound the expected value of the rank of the random matrix, and in

turn, the probability of full, resp. small rank matrices.

Corollary 3.1 If w ≥ ln n + ω(1) then E(min{m,n} − r) ≤ q−|m−n|

ln q
+ o(1)

Proof: According to Theorem 1.1 (and the fact that the same holds for the right kernel as well):

E(qmin{m,n}−r) ≤ (1 + o(1))(1 + q−|m−n|)

By Jensen inequality (qx is a convex function of x):

qE(min{m,n}−r) ≤ E(qmin{m,n}−r) ≤ (1 + o(1))(1 + q−|m−n|)

thus

E(min{m,n} − r) ≤ q−|m−n|

ln q
+ o(1). 2

Corollaries 1.2 and 1.3 follow immediately from Corollary 3.1 using the Markov inequality

(notice that min{m,n} − r is a nonnegative integer valued random variable).
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A Appendix

Here we provide some more details concerning the rank distribution with no bounds on weights.

Some of these facts were mentioned in the introduction. We start with the explicit expression for

this distribution - Formula (1).

Pr(rank = r) =
1

q(n−r)(m−r)

r−1∏

i=0

(1 − qi−n)(1 − qi−m)

1 − qi−r

for every 0 ≤ r ≤ min{m,n}. Other values of r do not occur, of course. This is a standard fact

and here is a sketch of a proof: Start with the case r = m. Here Pr(rank = r) =
∏r−1

i=0 (1 − qi−n)

expresses the fact that the rank equals to the number of row vectors iff each new randomly selected

row vector does not belong to the linear span of the previously chosen vectors.

For general values of r, we observe that an m × n matrix A has rank r iff it can be expressed as

16



A = BC, where B is m× r and C is r × n, and both have rank r. Moreover, this representation of

A is unique up to selecting a nonsingular r×r matrix D, and expressing A = B′C ′ where B′ = BD

and C ′ = D−1C. A proof of the formula now follows by direct counting.

In the introduction we made two claims about the tails of the above distribution. Namely, we

claimed that:

1. A random m × n matrix has, almost surely, full rank (an n grows) iff |n − m| is unbounded.

2. If |n − m| is bounded, then Pr(rank ≤ r) → 0 iff r ≤ min{m,n} − ω(1).

We first note that for any positive integers r ≤ n, and q ≥ 2:

(1 − qr−n−1)2 ≤
r−1∏

i=0

(1 − qi−n) ≤ 1 − qr−n−1

The upper bound is clear, and the lower bound can be easily derived by induction on r.

To prove the first claim, recall that Pr(rank = m) =
∏m−1

i=0 (1− qi−n), and thus this probability

equals to 1 − Θ(qm−n). By symmetry, Pr(rank = min{m,n}) = 1 − Θ(q−|n−m|) and thus, the first

claim.

For the second claim we observe that Pr(rank = r) = Θ(q−(n−r)(m−r)). This simply means

that there are some absolute positive constants A1 and A2, such that for any positive integers

r ≤ min{m,n}, and q ≥ 2:

A1 ≤
r−1∏

i=0

(1 − qi−n)(1 − qi−m)

1 − qi−r
≤ A2

(e.g. A1 = 1/16 and A2 = 4 can be established easily). We omit the easy derivation of these

bounds.
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